Recurrent neural network based parameter estimation of Hawkes model on
high-frequency financial data
- URL: http://arxiv.org/abs/2304.11883v1
- Date: Mon, 24 Apr 2023 07:51:11 GMT
- Title: Recurrent neural network based parameter estimation of Hawkes model on
high-frequency financial data
- Authors: Kyungsub Lee
- Abstract summary: This study examines the use of a recurrent neural network for estimating the parameters of a Hawkes model based on high-frequency financial data.
Our approach demonstrates significantly faster computational performance compared to traditional maximum likelihood estimation methods.
We demonstrate the application of this method for real-time volatility measurement, enabling the continuous estimation of financial volatility as new price data keeps coming from the market.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study examines the use of a recurrent neural network for estimating the
parameters of a Hawkes model based on high-frequency financial data, and
subsequently, for computing volatility. Neural networks have shown promising
results in various fields, and interest in finance is also growing. Our
approach demonstrates significantly faster computational performance compared
to traditional maximum likelihood estimation methods while yielding comparable
accuracy in both simulation and empirical studies. Furthermore, we demonstrate
the application of this method for real-time volatility measurement, enabling
the continuous estimation of financial volatility as new price data keeps
coming from the market.
Related papers
- Futures Quantitative Investment with Heterogeneous Continual Graph
Neural Network [13.882054287609021]
This study aims to address the challenges of futures price prediction in high-frequency trading (HFT) by proposing a continuous learning factor predictor based on graph neural networks.
The model integrates multi- pricing theories with real-time market dynamics, effectively bypassing the limitations of existing methods.
Empirical tests on 49 commodity futures in China's futures market demonstrate that the proposed model outperforms other state-of-the-art models in terms of prediction accuracy.
arXiv Detail & Related papers (2023-03-29T08:39:36Z) - Volatility forecasting using Deep Learning and sentiment analysis [0.0]
This paper presents a composite model that merges a deep learning approach with sentiment analysis for predicting market volatility.
We then describe a composite forecasting model, a Long-Short-Term-Memory Neural Network method, to use historical sentiment and the previous day's volatility to make forecasts.
arXiv Detail & Related papers (2022-10-22T14:54:33Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
arXiv Detail & Related papers (2022-01-14T14:02:19Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
We propose a novel data-driven normalization method for deep neural networks that handle high-frequency financial time-series.
The proposed normalization scheme takes into account the bimodal characteristic of financial time-series.
Our experiments, conducted with state-of-the-arts neural networks and high-frequency data, show significant improvements over other normalization techniques.
arXiv Detail & Related papers (2021-09-01T07:52:03Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Interpretable ML-driven Strategy for Automated Trading Pattern
Extraction [2.7910505923792646]
We propose a volume-based data pre-processing method for financial time series analysis.
We use a statistical approach for assessing the performance of the method.
Our analysis shows that the proposed method allows successful classification of the financial time series patterns.
arXiv Detail & Related papers (2021-03-23T09:55:46Z) - A Stochastic Time Series Model for Predicting Financial Trends using NLP [4.081440927534578]
Recent advancements in deep neural network technology allow researchers to develop highly accurate models to predict financial trends.
We propose a novel deep learning model called ST-GAN, or Time-series Generative Adversarial Network.
We utilize cutting-edge technology like the Generative Adversarial Network (GAN) to learn the correlations among textual and numerical data over time.
arXiv Detail & Related papers (2021-02-02T04:03:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.