論文の概要: Development of a Trust-Aware User Simulator for Statistical Proactive
Dialog Modeling in Human-AI Teams
- arxiv url: http://arxiv.org/abs/2304.11913v1
- Date: Mon, 24 Apr 2023 08:42:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 15:39:40.412933
- Title: Development of a Trust-Aware User Simulator for Statistical Proactive
Dialog Modeling in Human-AI Teams
- Title(参考訳): 人間-aiチームにおける統計的プロアクティブダイアログモデリングのための信頼度対応ユーザシミュレータの開発
- Authors: Matthias Kraus, Ron Riekenbrauck, Wolfgang Minker
- Abstract要約: 近年,人間-AIチームという概念が注目されている。
人間とAIチームメイトとの効果的なコラボレーションのためには、緊密な協調と効果的なコミュニケーションには、積極的活動が不可欠である。
本稿では,プロアクティブダイアログポリシーのトレーニングとテストのためのコーパスベースユーザシミュレータの開発について述べる。
- 参考スコア(独自算出の注目度): 4.384546153204966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of a Human-AI team has gained increasing attention in recent
years. For effective collaboration between humans and AI teammates, proactivity
is crucial for close coordination and effective communication. However, the
design of adequate proactivity for AI-based systems to support humans is still
an open question and a challenging topic. In this paper, we present the
development of a corpus-based user simulator for training and testing proactive
dialog policies. The simulator incorporates informed knowledge about proactive
dialog and its effect on user trust and simulates user behavior and personal
information, including socio-demographic features and personality traits. Two
different simulation approaches were compared, and a task-step-based approach
yielded better overall results due to enhanced modeling of sequential
dependencies. This research presents a promising avenue for exploring and
evaluating appropriate proactive strategies in a dialog game setting for
improving Human-AI teams.
- Abstract(参考訳): 近年,人間-AIチームという概念が注目されている。
人間とAIチームメイトとの効果的なコラボレーションのためには、緊密な協調と効果的なコミュニケーションには、積極的活動が不可欠である。
しかしながら、人間をサポートするAIベースのシステムのための適切な能動性の設計は、まだオープンな問題であり、課題である。
本稿では,プロアクティブダイアログポリシーのトレーニングとテストのためのコーパスベースユーザシミュレータの開発について述べる。
このシミュレータは、プロアクティブダイアログとそのユーザ信頼への影響に関するインフォームド知識を取り入れ、社会デポグラフィ的特徴やパーソナリティ特性を含むユーザの行動や個人情報をシミュレートする。
2つの異なるシミュレーション手法を比較し、タスクステップベースの手法により、逐次依存関係のモデリングの強化により、全体的な結果が改善された。
本研究では,人間-AIチーム改善のための対話ゲーム設定において,適切なプロアクティブ戦略を探索し,評価するための有望な方法を提案する。
関連論文リスト
- Simulating User Agents for Embodied Conversational-AI [9.402740034754455]
我々は,エンボディエージェントとのインタラクション中にユーザ動作をシミュレート可能な,LLMベースのユーザエージェントを構築した。
シミュレーション対話をTEAChデータセットと比較することにより,ユーザエージェントの人間的行動生成能力を評価する。
論文 参考訳(メタデータ) (2024-10-31T00:56:08Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
意思決定支援システムにおける人工知能の活用は、技術的進歩に不相応に焦点を合わせてきた。
人間中心の視点は、既存のプロセスとのシームレスな統合のためにAIソリューションを設計することで、この懸念を緩和しようとする。
論文 参考訳(メタデータ) (2023-10-30T17:46:38Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Few-Shot Structured Policy Learning for Multi-Domain and Multi-Task
Dialogues [0.716879432974126]
グラフニューラルネットワーク(GNN)は、シミュレーション専門家から学ぶ際に、わずか50の対話で80%以上の成功率に達することで、顕著な優位性を示している。
我々は,対話フレームワークにおける人的データ,シミュレータ,自動評価器のギャップを埋めることに,今後の研究努力を集中させることを提案する。
論文 参考訳(メタデータ) (2023-02-22T08:18:49Z) - Is MultiWOZ a Solved Task? An Interactive TOD Evaluation Framework with
User Simulator [37.590563896382456]
タスク指向対話(TOD)システムのための対話型評価フレームワークを提案する。
まず,事前学習したモデルに基づいて目標指向のユーザシミュレータを構築し,ユーザシミュレータを用いて対話システムと対話して対話を生成する。
実験の結果,提案したユーザシミュレータによりトレーニングされたRLベースのTODシステムは,約98%のインフォメーションと成功率を達成することができた。
論文 参考訳(メタデータ) (2022-10-26T07:41:32Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
強化学習におけるオフポリシ評価に基づく人間評価スコア推定のための新しいフレームワークであるENIGMAを提案する。
ENIGMAはいくつかの事前収集された経験データしか必要としないため、評価中にターゲットポリシーとのヒューマンインタラクションは不要である。
実験の結果,ENIGMAは人間の評価スコアと相関して既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-20T03:29:20Z) - Adaptive Dialog Policy Learning with Hindsight and User Modeling [10.088347529930129]
シミュレーションと実ユーザの両方から,ダイアログエージェントが後見で適応的に学習できるアルゴリズムLHUAを開発した。
実験結果から、LHUAは成功率と政策品質において、文献の競争基準よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2020-05-07T07:43:43Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。