Improving Knowledge Distillation via Transferring Learning Ability
- URL: http://arxiv.org/abs/2304.11923v2
- Date: Mon, 18 Sep 2023 12:30:10 GMT
- Title: Improving Knowledge Distillation via Transferring Learning Ability
- Authors: Long Liu, Tong Li, Hui Cheng
- Abstract summary: Existing knowledge distillation methods generally use a teacher-student approach, where the student network solely learns from a well-trained teacher.
This approach overlooks the inherent differences in learning abilities between the teacher and student networks, thus causing the capacity-gap problem.
We propose a novel method called SLKD to address this limitation.
- Score: 15.62306809592042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing knowledge distillation methods generally use a teacher-student
approach, where the student network solely learns from a well-trained teacher.
However, this approach overlooks the inherent differences in learning abilities
between the teacher and student networks, thus causing the capacity-gap
problem. To address this limitation, we propose a novel method called SLKD.
Related papers
- Student-Oriented Teacher Knowledge Refinement for Knowledge Distillation [11.754014876977422]
This paper introduces a novel perspective emphasizing student-oriented and refining the teacher's knowledge to better align with the student's needs.
We present the Student-Oriented Knowledge Distillation (SoKD), which incorporates a learnable feature augmentation strategy during training.
We also deploy the Distinctive Area Detection Module (DAM) to identify areas of mutual interest between the teacher and student.
arXiv Detail & Related papers (2024-09-27T14:34:08Z) - Tailoring Instructions to Student's Learning Levels Boosts Knowledge Distillation [52.53446712834569]
Learning Good Teacher Matters (LGTM) is an efficient training technique for incorporating distillation influence into the teacher's learning process.
Our LGTM outperforms 10 common knowledge distillation baselines on 6 text classification tasks in the GLUE benchmark.
arXiv Detail & Related papers (2023-05-16T17:50:09Z) - Improved Knowledge Distillation via Adversarial Collaboration [2.373824287636486]
Small student model is trained to exploit the knowledge of a large well-trained teacher model.
Due to the capacity gap between the teacher and the student, the student's performance is hard to reach the level of the teacher.
We propose an Adversarial Collaborative Knowledge Distillation (ACKD) method that effectively improves the performance of knowledge distillation.
arXiv Detail & Related papers (2021-11-29T07:20:46Z) - Fixing the Teacher-Student Knowledge Discrepancy in Distillation [72.4354883997316]
We propose a novel student-dependent distillation method, knowledge consistent distillation, which makes teacher's knowledge more consistent with the student.
Our method is very flexible that can be easily combined with other state-of-the-art approaches.
arXiv Detail & Related papers (2021-03-31T06:52:20Z) - Student Network Learning via Evolutionary Knowledge Distillation [22.030934154498205]
We propose an evolutionary knowledge distillation approach to improve the transfer effectiveness of teacher knowledge.
Instead of a fixed pre-trained teacher, an evolutionary teacher is learned online and consistently transfers intermediate knowledge to supervise student network learning on-the-fly.
In this way, the student can simultaneously obtain rich internal knowledge and capture its growth process, leading to effective student network learning.
arXiv Detail & Related papers (2021-03-23T02:07:15Z) - Learning Student-Friendly Teacher Networks for Knowledge Distillation [50.11640959363315]
We propose a novel knowledge distillation approach to facilitate the transfer of dark knowledge from a teacher to a student.
Contrary to most of the existing methods that rely on effective training of student models given pretrained teachers, we aim to learn the teacher models that are friendly to students.
arXiv Detail & Related papers (2021-02-12T07:00:17Z) - Collaborative Teacher-Student Learning via Multiple Knowledge Transfer [79.45526596053728]
We propose a collaborative teacher-student learning via multiple knowledge transfer (CTSL-MKT)
It allows multiple students learn knowledge from both individual instances and instance relations in a collaborative way.
The experiments and ablation studies on four image datasets demonstrate that the proposed CTSL-MKT significantly outperforms the state-of-the-art KD methods.
arXiv Detail & Related papers (2021-01-21T07:17:04Z) - Interactive Knowledge Distillation [79.12866404907506]
We propose an InterActive Knowledge Distillation scheme to leverage the interactive teaching strategy for efficient knowledge distillation.
In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation.
Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods.
arXiv Detail & Related papers (2020-07-03T03:22:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
We propose a novel KD method that works by modeling the information flow through the various layers of the teacher model.
The proposed method is capable of overcoming the aforementioned limitations by using an appropriate supervision scheme during the different phases of the training process.
arXiv Detail & Related papers (2020-05-02T06:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.