Data-driven modelling of brain activity using neural networks, Diffusion
Maps, and the Koopman operator
- URL: http://arxiv.org/abs/2304.11925v1
- Date: Mon, 24 Apr 2023 09:08:12 GMT
- Title: Data-driven modelling of brain activity using neural networks, Diffusion
Maps, and the Koopman operator
- Authors: Ioannis K. Gallos, Daniel Lehmberg, Felix Dietrich, Constantinos
Siettos
- Abstract summary: We propose a machine-learning approach to model long-term out-of-sample dynamics of brain activity from task-dependent fMRI data.
We use Diffusion maps (DMs) to discover a set of variables that parametrize the low-dimensional manifold on which the emergent high-dimensional fMRI time series evolve.
We construct reduced-order-models (ROMs) on the embedded manifold via two techniques: Feedforward Neural Networks (FNNs) and the Koopman operator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a machine-learning approach to model long-term out-of-sample
dynamics of brain activity from task-dependent fMRI data. Our approach is a
three stage one. First, we exploit Diffusion maps (DMs) to discover a set of
variables that parametrize the low-dimensional manifold on which the emergent
high-dimensional fMRI time series evolve. Then, we construct
reduced-order-models (ROMs) on the embedded manifold via two techniques:
Feedforward Neural Networks (FNNs) and the Koopman operator. Finally, for
predicting the out-of-sample long-term dynamics of brain activity in the
ambient fMRI space, we solve the pre-image problem coupling DMs with Geometric
Harmonics (GH) when using FNNs and the Koopman modes per se. For our
illustrations, we have assessed the performance of the two proposed schemes
using a benchmark fMRI dataset with recordings during a visuo-motor task. The
results suggest that just a few (for the particular task, five) non-linear
coordinates of the high-dimensional fMRI time series provide a good basis for
modelling and out-of-sample prediction of the brain activity. Furthermore, we
show that the proposed approaches outperform the one-step ahead predictions of
the naive random walk model, which, in contrast to our scheme, relies on the
knowledge of the signals in the previous time step. Importantly, we show that
the proposed Koopman operator approach provides, for any practical purposes,
equivalent results to the FNN-GH approach, thus bypassing the need to train a
non-linear map and to use GH to extrapolate predictions in the ambient fMRI
space; one can use instead the low-frequency truncation of the DMs function
space of L^2-integrable functions, to predict the entire list of coordinate
functions in the fMRI space and to solve the pre-image problem.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Multi-modal Gaussian Process Variational Autoencoders for Neural and
Behavioral Data [0.9622208190558754]
We propose an unsupervised latent variable model which extracts temporally evolving shared and independent latents for distinct, simultaneously recorded experimental modalities.
We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time.
We show that the multi-modal GP-VAE is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials.
arXiv Detail & Related papers (2023-10-04T19:04:55Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - DEMAND: Deep Matrix Approximately NonlinearDecomposition to Identify
Meta, Canonical, and Sub-Spatial Pattern of functional Magnetic Resonance
Imaging in the Human Brain [8.93274096260726]
We propose a novel deep nonlinear matrix factorization named Deep Approximately Decomposition (DEMAND) in this work to take advantage of the shallow linear model, e.g., Sparse Dictionary Learning (SDL) and Deep Neural Networks (DNNs)
DEMAND can reveal the reproducible meta, canonical, and sub-spatial features of the human brain more efficiently than other peer methodologies.
arXiv Detail & Related papers (2022-05-20T15:55:01Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
We propose a new approach, called as functional deep neural network (FDNN), for classifying multi-dimensional functional data.
Specifically, a deep neural network is trained based on the principle components of the training data which shall be used to predict the class label of a future data function.
arXiv Detail & Related papers (2022-05-17T19:22:48Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction [2.580765958706854]
3D skeleton-based motion prediction and activity recognition are two interwoven tasks in human behaviour analysis.
We propose a new way to combine the advantages of both graph convolutional neural networks and recurrent neural networks for joint human motion prediction and activity recognition.
arXiv Detail & Related papers (2021-08-03T14:07:10Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.