Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach
- URL: http://arxiv.org/abs/2304.12184v1
- Date: Tue, 11 Apr 2023 13:16:28 GMT
- Title: Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach
- Authors: Zhaoyuan Shi, Huabing Lu, Xianzhong Xie, Helin Yang, Chongwen Huang,
Jun Cai, and Zhiguo Ding
- Abstract summary: An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
- Score: 66.53364438507208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An active reconfigurable intelligent surface (RIS)-aided multi-user downlink
communication system is investigated, where non-orthogonal multiple access
(NOMA) is employed to improve spectral efficiency, and the active RIS is
powered by energy harvesting (EH). The problem of joint control of the RIS's
amplification matrix and phase shift matrix is formulated to maximize the
communication success ratio with considering the quality of service (QoS)
requirements of users, dynamic communication state, and dynamic available
energy of RIS. To tackle this non-convex problem, a cascaded deep learning
algorithm namely long short-term memory-deep deterministic policy gradient
(LSTM-DDPG) is designed. First, an advanced LSTM based algorithm is developed
to predict users' dynamic communication state. Then, based on the prediction
results, a DDPG based algorithm is proposed to joint control the amplification
matrix and phase shift matrix of the RIS. Finally, simulation results verify
the accuracy of the prediction of the proposed LSTM algorithm, and demonstrate
that the LSTM-DDPG algorithm has a significant advantage over other benchmark
algorithms in terms of communication success ratio performance.
Related papers
- Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Energy-Efficient Design for a NOMA assisted STAR-RIS Network with Deep
Reinforcement Learning [78.50920340621677]
Simultaneous transmitting and reconfigurable intelligent surfaces (STAR-RISs) has been considered as a promising auxiliary device to enhance the performance of wireless network.
In this paper, the energy efficiency (EE) problem for a non-orthogonal multiple access (NOMA) network is investigated.
A deep deterministic policy-based algorithm is proposed to maximize the EE by jointly optimizing the transmission beamforming vectors at the base station and the gradient matrices at the STAR-RIS.
arXiv Detail & Related papers (2021-11-30T15:01:19Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.