Energy-Efficient Design for a NOMA assisted STAR-RIS Network with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2111.15464v1
- Date: Tue, 30 Nov 2021 15:01:19 GMT
- Title: Energy-Efficient Design for a NOMA assisted STAR-RIS Network with Deep
Reinforcement Learning
- Authors: Yi Guo and Fang Fang and Donghong Cai and Zhiguo Ding
- Abstract summary: Simultaneous transmitting and reconfigurable intelligent surfaces (STAR-RISs) has been considered as a promising auxiliary device to enhance the performance of wireless network.
In this paper, the energy efficiency (EE) problem for a non-orthogonal multiple access (NOMA) network is investigated.
A deep deterministic policy-based algorithm is proposed to maximize the EE by jointly optimizing the transmission beamforming vectors at the base station and the gradient matrices at the STAR-RIS.
- Score: 78.50920340621677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces
(STAR-RISs) has been considered as a promising auxiliary device to enhance the
performance of the wireless network, where users located at the different sides
of the surfaces can be simultaneously served by the transmitting and reflecting
signals. In this paper, the energy efficiency (EE) maximization problem for a
non-orthogonal multiple access (NOMA) assisted STAR-RIS downlink network is
investigated. Due to the fractional form of the EE, it is challenging to solve
the EE maximization problem by the traditional convex optimization solutions.
In this work, a deep deterministic policy gradient (DDPG)-based algorithm is
proposed to maximize the EE by jointly optimizing the transmission beamforming
vectors at the base station and the coefficients matrices at the STAR-RIS.
Simulation results demonstrate that the proposed algorithm can effectively
maximize the system EE considering the time-varying channels.
Related papers
- Heuristic Solution to Joint Deployment and Beamforming Design for STAR-RIS Aided Networks [23.4781981471893]
This paper emphasizes the joint optimization of the location and orientation of STAR-RIS.
We consider a sum rate problem with joint optimization and hybrid beamforming design.
Numerical results demonstrate the substantial performance gains achievable through optimal deployment design.
arXiv Detail & Related papers (2024-04-14T05:45:41Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - STAR-RIS-Assisted-Full-Duplex Jamming Design for Secure Wireless Communications System [38.44290756174189]
We propose a novel secure communication scheme to protect critical and sensitive devices from eavesdroppers.
We aim to maximize the FD beam shift coefficients for the ESRIS, as mode selection, as to eavesdropper amplitudes and phase shift coefficients for the MSRIS.
arXiv Detail & Related papers (2023-09-08T19:36:02Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Energy Efficiency Maximization in IRS-Aided Cell-Free Massive MIMO
System [2.9081408997650375]
In this paper, we consider an intelligent reflecting surface (IRS)-aided cell-free massive multiple-input multiple-output system, where the beamforming at access points and the phase shifts at IRSs are jointly optimized to maximize energy efficiency (EE)
To solve EE problem, we propose an iterative optimization algorithm by using quadratic transform and Lagrangian dual transform to find the optimum beamforming and phase shifts.
We further propose a deep learning based approach for joint beamforming and phase shifts design. Specifically, a two-stage deep neural network is trained offline using the unsupervised learning manner, which is then deployed online for
arXiv Detail & Related papers (2022-12-24T14:58:15Z) - DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted
Networks [55.0821435415241]
A new paradigm in wireless communications, how to analyze the coverage and capacity performance of STAR-RISs becomes essential but challenging.
To solve the coverage and capacity optimization problem in STAR-RIS assisted networks, a multi-objective policy optimization (MO-PPO) algorithm is proposed.
In order to improve the performance of the MO-PPO algorithm, two update strategies, i.e., action-value-based update strategy (AVUS) and loss function-based update strategy (LFUS) are investigated.
arXiv Detail & Related papers (2022-09-01T14:54:36Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.