論文の概要: Optimizing fairness tradeoffs in machine learning with multiobjective
meta-models
- arxiv url: http://arxiv.org/abs/2304.12190v1
- Date: Fri, 21 Apr 2023 13:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 14:25:41.386625
- Title: Optimizing fairness tradeoffs in machine learning with multiobjective
meta-models
- Title(参考訳): 多目的メタモデルを用いた機械学習における公平性トレードオフの最適化
- Authors: William G. La Cava
- Abstract要約: 複数のコスト関数を持つ重み付き分類問題として、公平な機械学習タスクを定義するフレキシブルなフレームワークを提案する。
我々は、与えられた学習者のモデルトレーニングで使用されるサンプル重量を定義するために多目的最適化を使用し、重みを適応させ、公平性と精度の複数の指標を最適化する。
実世界の一連の問題において、このアプローチは、好ましいエラー/フェアネストレードオフを持つ解集合を見つけることによって、現在の最先端の手法よりも優れている。
- 参考スコア(独自算出の注目度): 0.913755431537592
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Improving the fairness of machine learning models is a nuanced task that
requires decision makers to reason about multiple, conflicting criteria. The
majority of fair machine learning methods transform the error-fairness
trade-off into a single objective problem with a parameter controlling the
relative importance of error versus fairness. We propose instead to directly
optimize the error-fairness tradeoff by using multi-objective optimization. We
present a flexible framework for defining the fair machine learning task as a
weighted classification problem with multiple cost functions. This framework is
agnostic to the underlying prediction model as well as the metrics. We use
multiobjective optimization to define the sample weights used in model training
for a given machine learner, and adapt the weights to optimize multiple metrics
of fairness and accuracy across a set of tasks. To reduce the number of
optimized parameters, and to constrain their complexity with respect to
population subgroups, we propose a novel meta-model approach that learns to map
protected attributes to sample weights, rather than optimizing those weights
directly. On a set of real-world problems, this approach outperforms current
state-of-the-art methods by finding solution sets with preferable
error/fairness trade-offs.
- Abstract(参考訳): 機械学習モデルの公平性を改善することは、意思決定者が複数の矛盾する基準を判断する必要がある、微妙なタスクである。
公平な機械学習手法の大多数は、エラー対公平性の相対的重要性を制御するパラメータを用いて、エラー対公平性のトレードオフを単一の目的問題に変換する。
そこで本研究では,多目的最適化を用いてエラーフェアネストレードオフを直接最適化する手法を提案する。
複数のコスト関数を持つ重み付き分類問題として、公平な機械学習タスクを定義するフレキシブルなフレームワークを提案する。
このフレームワークは、基盤となる予測モデルとメトリクスに依存しない。
我々は、与えられた機械学習者のモデルトレーニングで使用されるサンプル重量を定義するために多目的最適化を使用し、その重みを適用して、タスクセットの公平性と精度の複数の指標を最適化する。
最適化されたパラメータの数を減らし、人口サブグループに関してその複雑さを制約するために、保護された属性をサンプルの重みにマップすることを学ぶ新しいメタモデルアプローチを提案する。
実世界の一連の問題において、このアプローチは、好ましいエラー/フェアネストレードオフを持つ解集合を見つけることにより、現在の最先端手法よりも優れている。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - NegMerge: Consensual Weight Negation for Strong Machine Unlearning [21.081262106431506]
機械学習は、モデルから特定の知識を選択的に除去することを目的としている。
現在の手法は、左折セットの微調整モデルに依存し、タスクベクトルを生成し、元のモデルからそれを減算する。
1つのモデルを選択するのではなく、与えられた細調整されたモデルをすべて活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-08T00:50:54Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
より優れた一般化性を持つ性能向上フェアアルゴリズムが必要である。
本稿では,トレーニングデータとテストデータ間の分散シフトがモデル一般化性に与える影響を解消する適応的リライジング手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T13:04:55Z) - Canary in a Coalmine: Better Membership Inference with Ensembled
Adversarial Queries [53.222218035435006]
私たちは、差別的で多様なクエリを最適化するために、逆ツールを使用します。
我々の改善は既存の方法よりもはるかに正確な会員推定を実現している。
論文 参考訳(メタデータ) (2022-10-19T17:46:50Z) - Fairly Accurate: Learning Optimal Accuracy vs. Fairness Tradeoffs for
Hate Speech Detection [8.841221697099687]
本稿では,モデルトレーニングにおけるグループフェアネスの直接最適化を可能にする,微分可能な尺度を提案する。
ヘイトスピーチ検出の特定のタスクについて,本手法の評価を行った。
畳み込み、シーケンシャル、トランスフォーマーに基づくニューラルネットワークによる実験結果は、事前の作業よりも経験的精度が優れている。
論文 参考訳(メタデータ) (2022-04-15T22:11:25Z) - FORML: Learning to Reweight Data for Fairness [2.105564340986074]
メタラーニング(FORML)によるフェアネス最適化リヘアリングについて紹介する。
FORMLは、トレーニングサンプル重量とニューラルネットワークのパラメータを共同最適化することで、公正性の制約と精度のバランスを取る。
また,FORMLは,既存の最先端再重み付け手法に比べて,画像分類タスクで約1%,顔予測タスクで約5%向上することを示した。
論文 参考訳(メタデータ) (2022-02-03T17:36:07Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - A Primal-Dual Subgradient Approachfor Fair Meta Learning [23.65344558042896]
ショットのメタ学習は、その高速適応能力と、未知のタスクへの精度の一般化で有名である。
そこで本研究では,ごく少数の例を用いて,公正な機械学習モデルのトレーニングを学習するPrimal-Dual Meta-learningフレームワーク,すなわちPDFMを提案する。
論文 参考訳(メタデータ) (2020-09-26T19:47:38Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Fair Bayesian Optimization [25.80374249896801]
機械学習(ML)モデルの性能を最適化するために、一般的な制約付きベイズ最適化フレームワークを導入する。
我々は、ランダムな森林、ブースティング、ニューラルネットワークなど、さまざまな人気モデルに公平性制約のあるBOを適用した。
提案手法は,モデル固有の公正性制約を強制する特殊な手法と競合することを示す。
論文 参考訳(メタデータ) (2020-06-09T08:31:08Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。