NLP-LTU at SemEval-2023 Task 10: The Impact of Data Augmentation and
Semi-Supervised Learning Techniques on Text Classification Performance on an
Imbalanced Dataset
- URL: http://arxiv.org/abs/2304.12847v1
- Date: Tue, 25 Apr 2023 14:19:46 GMT
- Title: NLP-LTU at SemEval-2023 Task 10: The Impact of Data Augmentation and
Semi-Supervised Learning Techniques on Text Classification Performance on an
Imbalanced Dataset
- Authors: Sana Sabah Al-Azzawi, Gy\"orgy Kov\'acs, Filip Nilsson, Tosin Adewumi,
Marcus Liwicki
- Abstract summary: We propose a methodology for task 10 of SemEval23, focusing on detecting and classifying online sexism in social media posts.
Our solution for this task is based on an ensemble of fine-tuned transformer-based models.
- Score: 1.3445335428144554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a methodology for task 10 of SemEval23, focusing on
detecting and classifying online sexism in social media posts. The task is
tackling a serious issue, as detecting harmful content on social media
platforms is crucial for mitigating the harm of these posts on users. Our
solution for this task is based on an ensemble of fine-tuned transformer-based
models (BERTweet, RoBERTa, and DeBERTa). To alleviate problems related to class
imbalance, and to improve the generalization capability of our model, we also
experiment with data augmentation and semi-supervised learning. In particular,
for data augmentation, we use back-translation, either on all classes, or on
the underrepresented classes only. We analyze the impact of these strategies on
the overall performance of the pipeline through extensive experiments. while
for semi-supervised learning, we found that with a substantial amount of
unlabelled, in-domain data available, semi-supervised learning can enhance the
performance of certain models. Our proposed method (for which the source code
is available on Github attains an F1-score of 0.8613 for sub-taskA, which
ranked us 10th in the competition
Related papers
- TACLE: Task and Class-aware Exemplar-free Semi-supervised Class Incremental Learning [16.734025446561695]
We propose a novel TACLE framework to address the problem of exemplar-free semi-supervised class incremental learning.
In this scenario, at each new task, the model has to learn new classes from both labeled and unlabeled data.
In addition to leveraging the capabilities of pre-trained models, TACLE proposes a novel task-adaptive threshold.
arXiv Detail & Related papers (2024-07-10T20:46:35Z) - Sexism Detection on a Data Diet [14.899608305188002]
We show how we can leverage influence scores to estimate the importance of a data point while training a model.
We evaluate the model performance trained on data pruned with different pruning strategies on three out-of-domain datasets.
arXiv Detail & Related papers (2024-06-07T12:39:54Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Dynamic Loss For Robust Learning [17.33444812274523]
This work presents a novel meta-learning based dynamic loss that automatically adjusts the objective functions with the training process to robustly learn a classifier from long-tailed noisy data.
Our method achieves state-of-the-art accuracy on multiple real-world and synthetic datasets with various types of data biases, including CIFAR-10/100, Animal-10N, ImageNet-LT, and Webvision.
arXiv Detail & Related papers (2022-11-22T01:48:25Z) - Class-Aware Contrastive Semi-Supervised Learning [51.205844705156046]
We propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL) to improve pseudo-label quality and enhance the model's robustness in the real-world setting.
Our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 and STL10.
arXiv Detail & Related papers (2022-03-04T12:18:23Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - CatFedAvg: Optimising Communication-efficiency and Classification
Accuracy in Federated Learning [2.2172881631608456]
We introduce a new family of Federated Learning algorithms called CatFedAvg.
It improves the communication efficiency but improves the quality of learning using a category coverage inNIST strategy.
Our experiments show that an increase of 10% absolute points accuracy using the M dataset with 70% absolute points lower network transfer over FedAvg.
arXiv Detail & Related papers (2020-11-14T06:52:02Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z) - Mitigating Dataset Imbalance via Joint Generation and Classification [17.57577266707809]
Supervised deep learning methods are enjoying enormous success in many practical applications of computer vision.
The marked performance degradation to biases and imbalanced data questions the reliability of these methods.
We introduce a joint dataset repairment strategy by combining a neural network classifier with Generative Adversarial Networks (GAN)
We show that the combined training helps to improve the robustness of both the classifier and the GAN against severe class imbalance.
arXiv Detail & Related papers (2020-08-12T18:40:38Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.