Sexism Detection on a Data Diet
- URL: http://arxiv.org/abs/2406.04892v1
- Date: Fri, 7 Jun 2024 12:39:54 GMT
- Title: Sexism Detection on a Data Diet
- Authors: Rabiraj Bandyopadhyay, Dennis Assenmacher, Jose M. Alonso Moral, Claudia Wagner,
- Abstract summary: We show how we can leverage influence scores to estimate the importance of a data point while training a model.
We evaluate the model performance trained on data pruned with different pruning strategies on three out-of-domain datasets.
- Score: 14.899608305188002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is an increase in the proliferation of online hate commensurate with the rise in the usage of social media. In response, there is also a significant advancement in the creation of automated tools aimed at identifying harmful text content using approaches grounded in Natural Language Processing and Deep Learning. Although it is known that training Deep Learning models require a substantial amount of annotated data, recent line of work suggests that models trained on specific subsets of the data still retain performance comparable to the model that was trained on the full dataset. In this work, we show how we can leverage influence scores to estimate the importance of a data point while training a model and designing a pruning strategy applied to the case of sexism detection. We evaluate the model performance trained on data pruned with different pruning strategies on three out-of-domain datasets and find, that in accordance with other work a large fraction of instances can be removed without significant performance drop. However, we also discover that the strategies for pruning data, previously successful in Natural Language Inference tasks, do not readily apply to the detection of harmful content and instead amplify the already prevalent class imbalance even more, leading in the worst-case to a complete absence of the hateful class.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Word Matters: What Influences Domain Adaptation in Summarization? [43.7010491942323]
This paper investigates the fine-grained factors affecting domain adaptation performance.
We propose quantifying dataset learning difficulty as the learning difficulty of generative summarization.
Our experiments conclude that, when considering dataset learning difficulty, the cross-domain overlap and the performance gain in summarization tasks exhibit an approximate linear relationship.
arXiv Detail & Related papers (2024-06-21T02:15:49Z) - Large-Scale Dataset Pruning in Adversarial Training through Data Importance Extrapolation [1.3124513975412255]
We propose a new data pruning strategy based on extrapolating data importance scores from a small set of data to a larger set.
In an empirical evaluation, we demonstrate that extrapolation-based pruning can efficiently reduce dataset size while maintaining robustness.
arXiv Detail & Related papers (2024-06-19T07:23:51Z) - Unlearning Traces the Influential Training Data of Language Models [31.33791825286853]
This paper presents UnTrac: unlearning traces the influence of a training dataset on the model's performance.
We propose a more scalable approach, UnTrac-Inv, which unlearns a test dataset and evaluates the unlearned model on training datasets.
arXiv Detail & Related papers (2024-01-26T23:17:31Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
We develop a self-learning model to explore the constrastive learning in the domain of misinformation identification.
Our model shows the superior performance of non-matched image-text pair detection when the training data is insufficient.
arXiv Detail & Related papers (2023-04-19T02:53:59Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Robust Task-Oriented Dialogue Generation with Contrastive Pre-training
and Adversarial Filtering [17.7709632238066]
Data artifacts incentivize machine learning models to learn non-transferable generalizations.
We investigate whether popular datasets such as MultiWOZ contain such data artifacts.
We propose a contrastive learning based framework to encourage the model to ignore these cues and focus on learning generalisable patterns.
arXiv Detail & Related papers (2022-05-20T03:13:02Z) - Gradient-based Data Subversion Attack Against Binary Classifiers [9.414651358362391]
In this work, we focus on label contamination attack in which an attacker poisons the labels of data to compromise the functionality of the system.
We exploit the gradients of a differentiable convex loss function with respect to the predicted label as a warm-start and formulate different strategies to find a set of data instances to contaminate.
Our experiments show that the proposed approach outperforms the baselines and is computationally efficient.
arXiv Detail & Related papers (2021-05-31T09:04:32Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.