Rubik's Optical Neural Networks: Multi-task Learning with Physics-aware
Rotation Architecture
- URL: http://arxiv.org/abs/2304.12985v2
- Date: Tue, 2 May 2023 15:40:28 GMT
- Title: Rubik's Optical Neural Networks: Multi-task Learning with Physics-aware
Rotation Architecture
- Authors: Yingjie Li, Weilu Gao, Cunxi Yu
- Abstract summary: This work presents a novel ONNs architecture, namely, textitRubikONNs, which utilizes the physical properties of optical systems to encode multiple feed-forward functions.
Our experimental results demonstrate more than 4$times$ improvements in energy and cost efficiency with marginal accuracy compared to the state-of-the-art approaches.
- Score: 14.55785957623462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there are increasing efforts on advancing optical neural networks
(ONNs), which bring significant advantages for machine learning (ML) in terms
of power efficiency, parallelism, and computational speed. With the
considerable benefits in computation speed and energy efficiency, there are
significant interests in leveraging ONNs into medical sensing, security
screening, drug detection, and autonomous driving. However, due to the
challenge of implementing reconfigurability, deploying multi-task learning
(MTL) algorithms on ONNs requires re-building and duplicating the physical
diffractive systems, which significantly degrades the energy and cost
efficiency in practical application scenarios. This work presents a novel ONNs
architecture, namely, \textit{RubikONNs}, which utilizes the physical
properties of optical systems to encode multiple feed-forward functions by
physically rotating the hardware similarly to rotating a \textit{Rubik's Cube}.
To optimize MTL performance on RubikONNs, two domain-specific physics-aware
training algorithms \textit{RotAgg} and \textit{RotSeq} are proposed. Our
experimental results demonstrate more than 4$\times$ improvements in energy and
cost efficiency with marginal accuracy degradation compared to the
state-of-the-art approaches.
Related papers
- Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML.
This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model.
A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA.
arXiv Detail & Related papers (2024-11-03T16:42:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
Spiking Neural Networks (SNNs) are inspired by the sparse and event-driven nature of biological neural processing, and offer the potential for ultra-low-power artificial intelligence.
We explore the hardware-software co-design of sparse SNNs, examining how sparsity representation, hardware architectures, and training techniques influence hardware efficiency.
Our work aims to illuminate the path towards embedded neuromorphic systems that fully exploit the computational advantages of sparse SNNs.
arXiv Detail & Related papers (2024-08-26T17:22:11Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - Physics-aware Differentiable Discrete Codesign for Diffractive Optical
Neural Networks [12.952987240366781]
This work proposes a novel device-to-system hardware-software codesign framework, which enables efficient training of Diffractive optical neural networks (DONNs)
Gumbel-Softmax is employed to enable differentiable discrete mapping from real-world device parameters into the forward function of DONNs.
The results have demonstrated that our proposed framework offers significant advantages over conventional quantization-based methods.
arXiv Detail & Related papers (2022-09-28T17:13:28Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Real-time Multi-Task Diffractive Deep Neural Networks via
Hardware-Software Co-design [1.6066483376871004]
This work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$2$NNs.
Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$2$NN architecture.
arXiv Detail & Related papers (2020-12-16T12:29:54Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.