Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons
- URL: http://arxiv.org/abs/2411.01628v1
- Date: Sun, 03 Nov 2024 16:42:10 GMT
- Title: Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons
- Authors: Asmer Hamid Ali, Mozhgan Navardi, Tinoosh Mohsenin,
- Abstract summary: Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML.
This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model.
A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA.
- Score: 0.5243460995467893
- License:
- Abstract: Tiny Machine Learning (TinyML) has become a growing field in on-device processing for Internet of Things (IoT) applications, capitalizing on AI algorithms that are optimized for their low complexity and energy efficiency. These algorithms are designed to minimize power and memory footprints, making them ideal for the constraints of IoT devices. Within this domain, Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML, owning to their event-driven processing paradigm which offers an efficient method of handling dataflow. This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model to efficiently deploy vision-based ML algorithms on TinyML systems. A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA. To evaluate the proposed model, a collision avoidance dataset is considered as a case study. The proposed SNN model is compared to the state-of-the-art works and Binarized Convolutional Neural Network (BCNN) as a baseline. The results show the proposed approach is 86% more energy efficient than the baseline.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Combining Multi-Objective Bayesian Optimization with Reinforcement Learning for TinyML [4.2019872499238256]
We propose a novel strategy for deploying Deep Neural Networks on microcontrollers (TinyML) based on Multi-Objective Bayesian optimization (MOBOpt)
Our methodology aims at efficiently finding tradeoffs between a DNN's predictive accuracy, memory consumption on a given target system, and computational complexity.
arXiv Detail & Related papers (2023-05-23T14:31:52Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
Field-programmable gate array (FPGA)-based accelerators are gaining traction as a serious contender to replace graphics processing unit/central processing unit-based platforms.
This paper presents NullaNet Tiny, a framework for constructing resource and energy-efficient, ultra-low-latency FPGA-based neural network accelerators.
arXiv Detail & Related papers (2021-04-07T00:16:39Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
We propose a new power-and-area-efficient architecture for implementing Articial Neural Networks (ANNs) in hardware.
For the first time, a fully-parallel CNN as LENET-5 is embedded and tested in a single FPGA.
arXiv Detail & Related papers (2020-06-22T17:19:09Z) - Lightweight Residual Densely Connected Convolutional Neural Network [18.310331378001397]
The lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network.
The proposed method decreases the cost of training and inference processes without using any special hardware-software equipment.
arXiv Detail & Related papers (2020-01-02T17:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.