論文の概要: DuETT: Dual Event Time Transformer for Electronic Health Records
- arxiv url: http://arxiv.org/abs/2304.13017v2
- Date: Tue, 15 Aug 2023 21:02:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 17:00:54.929418
- Title: DuETT: Dual Event Time Transformer for Electronic Health Records
- Title(参考訳): duett: 電子健康記録用のデュアルイベントタイムトランスフォーマー
- Authors: Alex Labach, Aslesha Pokhrel, Xiao Shi Huang, Saba Zuberi, Seung Eun
Yi, Maksims Volkovs, Tomi Poutanen, Rahul G. Krishnan
- Abstract要約: 我々はDuETTアーキテクチャを紹介した。これは、時間とイベントの両タイプにまたがるように設計されたトランスフォーマーの拡張である。
DuETTは集約された入力を使用し、スパース時系列は一定長さの正規シーケンスに変換される。
本モデルでは,MIMIC-IV と PhysioNet-2012 EHR データセットを用いて,複数の下流タスクにおける最先端のディープラーニングモデルより優れています。
- 参考スコア(独自算出の注目度): 14.520791492631114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic health records (EHRs) recorded in hospital settings typically
contain a wide range of numeric time series data that is characterized by high
sparsity and irregular observations. Effective modelling for such data must
exploit its time series nature, the semantic relationship between different
types of observations, and information in the sparsity structure of the data.
Self-supervised Transformers have shown outstanding performance in a variety of
structured tasks in NLP and computer vision. But multivariate time series data
contains structured relationships over two dimensions: time and recorded event
type, and straightforward applications of Transformers to time series data do
not leverage this distinct structure. The quadratic scaling of self-attention
layers can also significantly limit the input sequence length without
appropriate input engineering. We introduce the DuETT architecture, an
extension of Transformers designed to attend over both time and event type
dimensions, yielding robust representations from EHR data. DuETT uses an
aggregated input where sparse time series are transformed into a regular
sequence with fixed length; this lowers the computational complexity relative
to previous EHR Transformer models and, more importantly, enables the use of
larger and deeper neural networks. When trained with self-supervised prediction
tasks, that provide rich and informative signals for model pre-training, our
model outperforms state-of-the-art deep learning models on multiple downstream
tasks from the MIMIC-IV and PhysioNet-2012 EHR datasets.
- Abstract(参考訳): 病院で記録された電子健康記録(ehrs)は、通常、高いスパーシティと不規則な観察によって特徴づけられる幅広い数値時系列データを含んでいる。
このようなデータの効果的なモデリングは、時系列の性質、異なる種類の観測のセマンティックな関係、およびデータの空間構造における情報を活用する必要がある。
自己教師付きトランスフォーマーは、nlpやコンピュータビジョンの様々な構造化タスクにおいて優れた性能を示している。
しかし、多変量時系列データには、時間と記録されたイベントタイプという2次元にわたる構造化された関係が含まれており、時系列データへのトランスフォーマーの直接的な適用は、この異なる構造を利用しない。
セルフアテンション層の二次スケーリングは、適切な入力工学を使わずに入力シーケンスの長さを著しく制限することができる。
我々は,時間型とイベント型の両方の次元に対応するように設計されたトランスフォーマーの拡張であるduettアーキテクチャを紹介し,ehlデータからロバスト表現を生成する。
DuETTは、スパース時系列が一定の長さの正規シーケンスに変換される集約された入力を使用する。これにより、従来のERHトランスフォーマーモデルと比較して計算の複雑さが低下し、より重要なことに、より大きく深いニューラルネットワークの使用が可能になる。
モデル事前学習のためのリッチで情報的な信号を提供する自己教師型予測タスクを訓練すると、MIMIC-IVおよびPhystoNet-2012 EHRデータセットから得られた複数の下流タスクにおける最先端のディープラーニングモデルよりも優れる。
関連論文リスト
- LSEAttention is All You Need for Time Series Forecasting [0.0]
トランスフォーマーベースのアーキテクチャは自然言語処理とコンピュータビジョンにおいて顕著な成功を収めた。
変圧器モデルでよく見られるエントロピー崩壊とトレーニング不安定性に対処するアプローチである textbfLSEAttention を導入する。
論文 参考訳(メタデータ) (2024-10-31T09:09:39Z) - Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
時系列予測のためのMetaTST(Metadata-informed Time Series Transformer)を提案する。
メタデータの非構造化の性質に取り組むため、MetaTSTは、事前に設計されたテンプレートによってそれらを自然言語に形式化する。
Transformerエンコーダは、メタデータ情報によるシーケンス表現を拡張するシリーズトークンとメタデータトークンの通信に使用される。
論文 参考訳(メタデータ) (2024-10-04T11:37:55Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - sTransformer: A Modular Approach for Extracting Inter-Sequential and Temporal Information for Time-Series Forecasting [6.434378359932152]
既存のTransformerベースのモデルを,(1)モデル構造の変更,(2)入力データの変更の2つのタイプに分類する。
我々は、シーケンシャル情報と時間情報の両方をフルにキャプチャするSequence and Temporal Convolutional Network(STCN)を導入する$textbfsTransformer$を提案する。
我々は,線形モデルと既存予測モデルとを長期時系列予測で比較し,新たな成果を得た。
論文 参考訳(メタデータ) (2024-08-19T06:23:41Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
本稿では,時系列表現を効果的に学習できる新しいフレームワークTEMPOを提案する。
TEMPOは、様々な領域のデータから現実世界の時間現象を動的にモデル化する機能を拡張する。
論文 参考訳(メタデータ) (2023-10-08T00:02:25Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - A Time Series is Worth 64 Words: Long-term Forecasting with Transformers [4.635547236305835]
本稿では,時系列予測と自己教師型表現学習のためのトランスフォーマーモデルを提案する。
i) 時系列をサブシリーズレベルのパッチに分割し、Transformerへの入力トークンとして機能させる。
PatchTSTは、SOTA Transformerベースのモデルと比較して、長期予測精度を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-11-27T05:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。