論文の概要: Federated Deep Reinforcement Learning for THz-Beam Search with Limited
CSI
- arxiv url: http://arxiv.org/abs/2304.13109v1
- Date: Tue, 25 Apr 2023 19:28:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 16:43:46.319197
- Title: Federated Deep Reinforcement Learning for THz-Beam Search with Limited
CSI
- Title(参考訳): 限定CSIを用いたTHzビーム探索のための深部強化学習
- Authors: Po-Chun Hsu, Li-Hsiang Shen, Chun-Hung Liu, and Kai-Ten Feng
- Abstract要約: 超広帯域でのテラヘルツ(THz)通信は次世代無線ネットワークにおける高データレートの厳密な要求を実現するための有望な技術である。
THz信号の激しい伝搬減衰を効果的に克服するために、大規模なアンテナアレイのビーム方向を見つけることは、迫力のあるニーズである。
本稿では,複数の基地局のTHzビーム探索を高速に行うためのFDRL(Federated Deep reinforcement Learning)を提案する。
- 参考スコア(独自算出の注目度): 17.602598143822913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Terahertz (THz) communication with ultra-wide available spectrum is a
promising technique that can achieve the stringent requirement of high data
rate in the next-generation wireless networks, yet its severe propagation
attenuation significantly hinders its implementation in practice. Finding beam
directions for a large-scale antenna array to effectively overcome severe
propagation attenuation of THz signals is a pressing need. This paper proposes
a novel approach of federated deep reinforcement learning (FDRL) to swiftly
perform THz-beam search for multiple base stations (BSs) coordinated by an edge
server in a cellular network. All the BSs conduct deep deterministic policy
gradient (DDPG)-based DRL to obtain THz beamforming policy with limited channel
state information (CSI). They update their DDPG models with hidden information
in order to mitigate inter-cell interference. We demonstrate that the cell
network can achieve higher throughput as more THz CSI and hidden neurons of
DDPG are adopted. We also show that FDRL with partial model update is able to
nearly achieve the same performance of FDRL with full model update, which
indicates an effective means to reduce communication load between the edge
server and the BSs by partial model uploading. Moreover, the proposed FDRL
outperforms conventional non-learning-based and existing non-FDRL benchmark
optimization methods.
- Abstract(参考訳): 超広帯域でのテラヘルツ(THz)通信は、次世代無線ネットワークにおける高データレートの厳密な要求を実現するための有望な技術であるが、その高度な伝搬減衰は、実際にの実装を著しく妨げている。
thz信号の重大伝搬減衰を効果的に克服するために、大規模アンテナアレイのビーム方向を見つけることは、圧迫の必要である。
本稿では,携帯電話ネットワーク上でエッジサーバが協調する複数の基地局(BS)のTHzビーム探索を高速に行うためのFDRL(Federated Deep reinforcement Learning)を提案する。
全てのBSはDDPG(Deep Deterministic Policy gradient)ベースのDRLを実行し、限られたチャネル状態情報(CSI)を持つTHzビームフォーミングポリシーを得る。
彼らは、細胞間干渉を軽減するために、隠された情報でDDPGモデルを更新する。
我々は,THz CSIとDDPGの隠れニューロンの採用により,セルネットワークのスループットが向上できることを実証した。
また、部分モデル更新によるFDRLは、フルモデル更新によるFDRLと同じ性能をほぼ達成できることを示し、部分モデルアップロードによるエッジサーバとBS間の通信負荷を低減する効果的な手段を示す。
さらに、提案したFDRLは、従来の非学習ベースおよび既存の非FDRLベンチマーク最適化手法よりも優れている。
関連論文リスト
- Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning [68.63990729719369]
無線スペクトルは乏しくなり、D2D通信のスペクトル効率は低い。
本稿では, 周囲RF信号の後方散乱を可能にするために, 環境後方散乱通信技術をD2Dデバイスに統合することを目的とする。
我々は、より少ないトレーニングパラメータでより高速な収束率を達成することができる新しい量子強化学習(RL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-23T15:36:43Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - Near-field Beam training for Extremely Large-scale MIMO Based on Deep Learning [20.67122533341949]
深層学習に基づく近接場ビームトレーニング手法を提案する。
我々は,歴史データからチャネル特性を効率的に学習するために,畳み込みニューラルネットワーク(CNN)を用いる。
提案手法は,従来のビームトレーニング法と比較して,より安定したビームフォーミングゲインを実現し,性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-06-05T13:26:25Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
ディープラーニング法はスペクトル画像(SI)計算タスクの最先端技術である。
GANは、データ分散から学習およびサンプリングすることで、多様な拡張を可能にする。
この種のデータの高次元性は、GANトレーニングの収束を妨げるため、GANベースのSI生成は困難である。
本稿では, オートエンコーダ訓練における低次元表現分散を制御し, GANで生成されたサンプルの多様性を高めるための統計正則化を提案する。
論文 参考訳(メタデータ) (2023-04-29T00:25:02Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z) - Multi-hop RIS-Empowered Terahertz Communications: A DRL-based Hybrid
Beamforming Design [39.21220050099642]
テラヘルツ帯における無線通信 (0.1-10thz) は、将来の第6世代 (6g) 無線通信システムの鍵となる技術の一つとして考えられている。
マルチホップRIS対応通信ネットワークのための新しいハイブリッドビームフォーミング方式を提案し,THz帯域でのカバレッジ範囲を改善する。
論文 参考訳(メタデータ) (2021-01-22T14:56:28Z) - Hybrid Beamforming for RIS-Empowered Multi-hop Terahertz Communications:
A DRL-based Method [43.95403787396996]
TeraHertzバンド(0.1-10 THz)における無線通信は、将来の6世代(6G)無線通信システムにおいて重要な技術のひとつとして想定されている。
本稿では,マルチホップRIS支援通信ネットワークのための新しいハイブリッドビームフォーミング方式を提案する。
論文 参考訳(メタデータ) (2020-09-20T07:51:49Z) - Distributed Uplink Beamforming in Cell-Free Networks Using Deep
Reinforcement Learning [25.579612460904873]
本稿では,集中処理,半分散処理,完全分散処理を備えたアップリンクセルフリーネットワークのためのビームフォーミング手法を提案する。
分散ビームフォーミング手法は,小規模ネットワークのみを対象とした集中学習によるDDPGアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-06-26T17:54:34Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
ドローン基地局(DBS)は、要求が動的で予測不可能な地上ユーザーへのアップリンク接続を提供するために派遣される。
この場合、DBSの軌道は動的ユーザアクセス要求を満たすように適応的に調整されなければならない。
新たな環境に遭遇したDBSの軌道に適応するために,メタラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-25T20:43:59Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。