論文の概要: ESimCSE Unsupervised Contrastive Learning Jointly with UDA
Semi-Supervised Learning for Large Label System Text Classification Mode
- arxiv url: http://arxiv.org/abs/2304.13140v1
- Date: Wed, 19 Apr 2023 03:44:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 07:19:17.104868
- Title: ESimCSE Unsupervised Contrastive Learning Jointly with UDA
Semi-Supervised Learning for Large Label System Text Classification Mode
- Title(参考訳): 大規模ラベルシステムテキスト分類モードにおける教師なしコントラスト学習とUDA半教師付き学習
- Authors: Ruan Lu, Zhou HangCheng, Ran Meng, Zhao Jin, Qin JiaoYu, Wei Feng,
Wang ChenZi
- Abstract要約: ESimCSEモデルは、ラベルのないデータを用いてテキストベクトル表現を効率よく学習し、より良い分類結果を得る。
UDAは、モデルと安定性の予測性能を改善するために、半教師付き学習手法を通じてラベルのないデータを用いて訓練される。
FGMとPGDは、モデルの堅牢性と信頼性を向上させるために、モデルトレーニングプロセスで使用される。
- 参考スコア(独自算出の注目度): 4.708633772366381
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenges faced by text classification with large tag systems in natural
language processing tasks include multiple tag systems, uneven data
distribution, and high noise. To address these problems, the ESimCSE
unsupervised comparative learning and UDA semi-supervised comparative learning
models are combined through the use of joint training techniques in the
models.The ESimCSE model efficiently learns text vector representations using
unlabeled data to achieve better classification results, while UDA is trained
using unlabeled data through semi-supervised learning methods to improve the
prediction performance of the models and stability, and further improve the
generalization ability of the model. In addition, adversarial training
techniques FGM and PGD are used in the model training process to improve the
robustness and reliability of the model. The experimental results show that
there is an 8% and 10% accuracy improvement relative to Baseline on the public
dataset Ruesters as well as on the operational dataset, respectively, and a 15%
improvement in manual validation accuracy can be achieved on the operational
dataset, indicating that the method is effective.
- Abstract(参考訳): 自然言語処理タスクにおける大きなタグシステムによるテキスト分類の課題は、複数のタグシステム、不均一なデータ分散、高ノイズである。
To address these problems, the ESimCSE unsupervised comparative learning and UDA semi-supervised comparative learning models are combined through the use of joint training techniques in the models.The ESimCSE model efficiently learns text vector representations using unlabeled data to achieve better classification results, while UDA is trained using unlabeled data through semi-supervised learning methods to improve the prediction performance of the models and stability, and further improve the generalization ability of the model.
さらに、モデルの堅牢性と信頼性を向上させるため、モデルトレーニングプロセスではFGMとPGDの対向訓練技術が使用される。
実験の結果,公開データセットラスターおよび運用データセット上では,ベースラインに対して8%と10%の精度向上が達成され,操作データセットでは手作業による検証精度が15%向上し,本手法が有効であることが示唆された。
関連論文リスト
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
Debias and Denoise Attribution (DDA) と呼ばれる新しいトレーニングデータ属性法を導入する。
提案手法は既存のアプローチよりも優れており,平均91.64%のAUCを実現している。
DDAは、様々なソースとLLaMA2、QWEN2、Mistralのような異なるスケールのモデルに対して、強力な汎用性とスケーラビリティを示す。
論文 参考訳(メタデータ) (2024-10-02T07:14:26Z) - Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI [17.242331892899543]
学習パフォーマンスデータは、適応学習における正しい解答や問題解決の試みを記述している。
学習性能データは、適応的なアイテム選択のため、ほとんどの実世界のアプリケーションでは、非常にスパースな(80%(sim)90%の欠落)傾向にある。
本稿では,学習者のデータの分散性に対処するために,学習者のデータを拡張するための体系的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T00:25:07Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Collaboration of Teachers for Semi-supervised Object Detection [20.991741476731967]
本稿では,教師と学生の複数対の学習モデルからなるCTF(Collaboration of Teachers Framework)を提案する。
このフレームワークは、ラベルのないデータの利用を大幅に改善し、信頼できない擬似ラベルの正のフィードバックサイクルを防止する。
論文 参考訳(メタデータ) (2024-05-22T06:17:50Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Class-Aware Contrastive Semi-Supervised Learning [51.205844705156046]
本研究では,擬似ラベル品質を向上し,実環境におけるモデルの堅牢性を高めるため,CCSSL(Class-Aware Contrastive Semi-Supervised Learning)と呼ばれる一般的な手法を提案する。
提案するCCSSLは,標準データセットCIFAR100とSTL10の最先端SSLメソッドに対して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2022-03-04T12:18:23Z) - Self Training with Ensemble of Teacher Models [8.257085583227695]
堅牢なディープラーニングモデルのトレーニングには,大量のラベル付きデータが必要である。
このようなラベル付きデータの大規模なリポジトリがなければ、ラベルなしのデータも同様に利用することができる。
準スーパービジョン学習は、そのようなラベルのないデータを分類モデルの訓練に活用することを目的としている。
論文 参考訳(メタデータ) (2021-07-17T09:44:09Z) - Ensemble Learning-Based Approach for Improving Generalization Capability
of Machine Reading Comprehension Systems [0.7614628596146599]
機械読み取り(MRC)は、近年、多くの開発が成功した自然言語処理の活発な分野である。
分布精度が高いにもかかわらず、これらのモデルには2つの問題がある。
本稿では,大規模モデルを再学習することなく,MCCシステムの一般化を改善するためのアンサンブル学習手法の効果について検討する。
論文 参考訳(メタデータ) (2021-07-01T11:11:17Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。