Games for Artificial Intelligence Research: A Review and Perspectives
- URL: http://arxiv.org/abs/2304.13269v4
- Date: Tue, 4 Jun 2024 05:18:04 GMT
- Title: Games for Artificial Intelligence Research: A Review and Perspectives
- Authors: Chengpeng Hu, Yunlong Zhao, Ziqi Wang, Haocheng Du, Jialin Liu,
- Abstract summary: This paper reviews the games and game-based platforms for artificial intelligence research.
It provides guidance on matching particular types of artificial intelligence with suitable games for testing and matching particular needs in games with suitable artificial intelligence techniques.
- Score: 4.44336371847479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Games have been the perfect test-beds for artificial intelligence research for the characteristics that widely exist in real-world scenarios. Learning and optimisation, decision making in dynamic and uncertain environments, game theory, planning and scheduling, design and education are common research areas shared between games and real-world problems. Numerous open-source games or game-based environments have been implemented for studying artificial intelligence. In addition to single- or multi-player, collaborative or adversarial games, there has also been growing interest in implementing platforms for creative design in recent years. Those platforms provide ideal benchmarks for exploring and comparing artificial intelligence ideas and techniques. This paper reviews the games and game-based platforms for artificial intelligence research, provides guidance on matching particular types of artificial intelligence with suitable games for testing and matching particular needs in games with suitable artificial intelligence techniques, discusses the research trend induced by the evolution of those games and platforms, and gives an outlook.
Related papers
- Optimizing Hearthstone Agents using an Evolutionary Algorithm [0.0]
This paper proposes the use of evolutionary algorithms (EAs) to develop agents who play a card game, Hearthstone.
Agents feature self-learning by means of a competitive coevolutionary training approach.
One of the agents developed through the proposed approach was runner-up (best 6%) in an international Hearthstone Artificial Intelligence (AI) competition.
arXiv Detail & Related papers (2024-10-25T16:49:11Z) - Serious Games in Digital Gaming: A Comprehensive Review of Applications,
Game Engines and Advancements [55.2480439325792]
In recent years, serious games have become increasingly popular due to their ability to simultaneously educate and entertain users.
In this review, we provide a comprehensive overview of the different types of digital games and expand on the serious games genre.
We present the most widely used game engines used in the game development industry and extend the Unity game machine advantages.
arXiv Detail & Related papers (2023-11-03T09:17:09Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Student of Games: A unified learning algorithm for both perfect and
imperfect information games [22.97853623156316]
Student of Games is an algorithm that combines guided search, self-play learning, and game-theoretic reasoning.
We prove that Student of Games is sound, converging to perfect play as available computation and approximation capacity increases.
Student of Games reaches strong performance in chess and Go, beats the strongest openly available agent in heads-up no-limit Texas hold'em poker, and defeats the state-of-the-art agent in Scotland Yard.
arXiv Detail & Related papers (2021-12-06T17:16:24Z) - On games and simulators as a platform for development of artificial
intelligence for command and control [46.33784995107226]
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios.
The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community.
arXiv Detail & Related papers (2021-10-21T17:39:58Z) - Modular Object-Oriented Games: A Task Framework for Reinforcement
Learning, Psychology, and Neuroscience [0.8594140167290096]
In recent years, trends towards studying simulated games have gained momentum in the fields of artificial intelligence, cognitive science, psychology, and neuroscience.
Here we introduce Modular Object-Oriented Games, a Python task framework that is lightweight, flexible, customizable, and designed for use by machine learning, psychology, and neurophysiology researchers.
arXiv Detail & Related papers (2021-02-25T01:17:03Z) - Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree [55.41644538483948]
We present a new machine learning model by imitation based on the linguistic description of complex phenomena.
The method can be a good alternative to design and implement the behaviour of intelligent agents in video game development.
arXiv Detail & Related papers (2021-01-06T21:14:10Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
Predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision.
We illustrate that football analytics is a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI.
arXiv Detail & Related papers (2020-11-18T10:26:02Z) - Navigating the Landscape of Multiplayer Games [20.483315340460127]
We show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games.
We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another.
arXiv Detail & Related papers (2020-05-04T16:58:17Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
This work presents an exploration and imitation-learning-based agent capable of state-of-the-art performance in playing text-based computer games.
Text-based computer games describe their world to the player through natural language and expect the player to interact with the game using text.
These games are of interest as they can be seen as a testbed for language understanding, problem-solving, and language generation by artificial agents.
arXiv Detail & Related papers (2020-01-24T03:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.