AI-Generated Images as Data Source: The Dawn of Synthetic Era
- URL: http://arxiv.org/abs/2310.01830v3
- Date: Mon, 23 Oct 2023 08:57:58 GMT
- Title: AI-Generated Images as Data Source: The Dawn of Synthetic Era
- Authors: Zuhao Yang, Fangneng Zhan, Kunhao Liu, Muyu Xu, Shijian Lu
- Abstract summary: generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
- Score: 61.879821573066216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of visual intelligence is intrinsically tethered to the
availability of large-scale data. In parallel, generative Artificial
Intelligence (AI) has unlocked the potential to create synthetic images that
closely resemble real-world photographs. This prompts a compelling inquiry: how
much visual intelligence could benefit from the advance of generative AI? This
paper explores the innovative concept of harnessing these AI-generated images
as new data sources, reshaping traditional modeling paradigms in visual
intelligence. In contrast to real data, AI-generated data exhibit remarkable
advantages, including unmatched abundance and scalability, the rapid generation
of vast datasets, and the effortless simulation of edge cases. Built on the
success of generative AI models, we examine the potential of their generated
data in a range of applications, from training machine learning models to
simulating scenarios for computational modeling, testing, and validation. We
probe the technological foundations that support this groundbreaking use of
generative AI, engaging in an in-depth discussion on the ethical, legal, and
practical considerations that accompany this transformative paradigm shift.
Through an exhaustive survey of current technologies and applications, this
paper presents a comprehensive view of the synthetic era in visual
intelligence. A project associated with this paper can be found at
https://github.com/mwxely/AIGS .
Related papers
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
This paper aims to investigate the intersection of GenAI and SAR.
First, we illustrate the common data generation-based applications in SAR field.
Then, an overview of the latest GenAI models is systematically reviewed.
Finally, the corresponding applications in SAR domain are also included.
arXiv Detail & Related papers (2024-11-05T03:06:00Z) - Synthetic data: How could it be used for infectious disease research? [0.16752458252726457]
Concerns have been raised about potential negative factors associated with the possibilities of artificial dataset generation.
These include the potential misuse of generative artificial intelligence in fields such as cybercrime.
Synthetic data offers significant benefits, particularly in data privacy, research, in balancing datasets and reducing bias in machine learning models.
arXiv Detail & Related papers (2024-07-03T17:13:04Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI.
The major impact that generative AI has made to date, has been in language generation with the development of large language models.
The paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
arXiv Detail & Related papers (2024-05-17T18:03:59Z) - When AI Eats Itself: On the Caveats of AI Autophagy [18.641925577551557]
The AI autophagy phenomenon suggests a future where generative AI systems may increasingly consume their own outputs without discernment.
This study examines the existing literature, delving into the consequences of AI autophagy, analyzing the associated risks, and exploring strategies to mitigate its impact.
arXiv Detail & Related papers (2024-05-15T13:50:23Z) - Visual Knowledge in the Big Model Era: Retrospect and Prospect [63.282425615863]
Visual knowledge is a new form of knowledge representation that can encapsulate visual concepts and their relations in a succinct, comprehensive, and interpretable manner.
As the knowledge about the visual world has been identified as an indispensable component of human cognition and intelligence, visual knowledge is poised to have a pivotal role in establishing machine intelligence.
arXiv Detail & Related papers (2024-04-05T07:31:24Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
We show that AI-generated images introduce an invisible relevance bias to text-image retrieval models.
The inclusion of AI-generated images in the training data of the retrieval models exacerbates the invisible relevance bias.
We propose an effective training method aimed at alleviating the invisible relevance bias.
arXiv Detail & Related papers (2023-11-23T16:22:58Z) - Towards Understanding the Interplay of Generative Artificial
Intelligence and the Internet [6.62688326060372]
generative AI tools can generate realistic images or text, such as DALL-E, MidJourney, or ChatGPT.
These tools are possible due to the massive amount of data (text and images) that is publicly available through the Internet.
Future versions of generative AI tools will be trained with a mix of human-created and AI-generated content.
This interaction raises many questions: how will future versions of generative AI tools behave when trained on a mixture of real and AI generated data?
arXiv Detail & Related papers (2023-06-08T11:14:51Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
This article proposes to enhance our ability to recognise AI-generated images through computer vision.
The two sets of data present as a binary classification problem with regard to whether the photograph is real or generated by AI.
This study proposes the use of a Convolutional Neural Network (CNN) to classify the images into two categories; Real or Fake.
arXiv Detail & Related papers (2023-03-24T16:33:06Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.