論文の概要: Implicit Counterfactual Data Augmentation for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2304.13431v1
- Date: Wed, 26 Apr 2023 10:36:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 14:40:46.607018
- Title: Implicit Counterfactual Data Augmentation for Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークのための暗黙の対実データ拡張
- Authors: Xiaoling Zhou, Ou Wu
- Abstract要約: 機械学習モデルは、非因果属性とクラスの間の急激な相関を捉える傾向にある。
本研究では,突発的相関を除去し,安定な予測を行う暗黙的対実データ拡張手法を提案する。
- 参考スコア(独自算出の注目度): 3.6397924689580745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learning models are prone to capturing the spurious correlations
between non-causal attributes and classes, with counterfactual data
augmentation being a promising direction for breaking these spurious
associations. However, explicitly generating counterfactual data is
challenging, with the training efficiency declining. Therefore, this study
proposes an implicit counterfactual data augmentation (ICDA) method to remove
spurious correlations and make stable predictions. Specifically, first, a novel
sample-wise augmentation strategy is developed that generates semantically and
counterfactually meaningful deep features with distinct augmentation strength
for each sample. Second, we derive an easy-to-compute surrogate loss on the
augmented feature set when the number of augmented samples becomes infinite.
Third, two concrete schemes are proposed, including direct quantification and
meta-learning, to derive the key parameters for the robust loss. In addition,
ICDA is explained from a regularization aspect, with extensive experiments
indicating that our method consistently improves the generalization performance
of popular depth networks on multiple typical learning scenarios that require
out-of-distribution generalization.
- Abstract(参考訳): 機械学習モデルは、非causal属性とクラスの間のスプリアス相関を捉える傾向にあり、偽データ拡張はこれらのスプリアス関連を破る有望な方向である。
しかしながら、トレーニング効率が低下する中で、反事実データを明確に生成することは困難である。
そこで本研究では,突発的相関を除去し,安定した予測を行う暗黙の反事実データ拡張法を提案する。
具体的には,まず,各試料に対して異なる加重強度を有する意味的かつ反実有意義な深層特徴を生成できる新しい加重戦略を開発した。
第2に、拡張サンプルの数が無限になれば、拡張特徴集合上で簡単に計算可能なサロゲート損失を導出する。
第3に、ロバストな損失の鍵となるパラメータを導出するために、直接定量化とメタラーニングを含む2つの具体的なスキームを提案する。
さらに,本手法は,分散一般化を必要とする複数の典型的な学習シナリオにおいて,一般的な奥行きネットワークの一般化性能を一貫して向上させることを示す広範な実験によって,正規化の観点から説明されている。
関連論文リスト
- Boosting Model Resilience via Implicit Adversarial Data Augmentation [20.768174896574916]
本稿では, 対向性および対向性摂動分布を組み込むことにより, 試料の深い特性を増大させることを提案する。
そして、この拡張過程が代理損失関数の最適化に近似することを理論的に明らかにする。
我々は4つの共通のバイアス付き学習シナリオにまたがって広範な実験を行う。
論文 参考訳(メタデータ) (2024-04-25T03:22:48Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Enhancing Visual Perception in Novel Environments via Incremental Data
Augmentation Based on Style Transfer [2.516855334706386]
未知の未知"は、現実のシナリオにおける自律的なエージェントデプロイメントに挑戦する。
提案手法は,変分プロトタイピング(VPE)を利用して,新規入力を積極的に識別し,処理することで視覚知覚を向上させる。
本研究は,ドメイン固有の拡張戦略に生成モデルを組み込むことの潜在的な利点を示唆する。
論文 参考訳(メタデータ) (2023-09-16T03:06:31Z) - On Counterfactual Data Augmentation Under Confounding [30.76982059341284]
トレーニングデータのバイアスを緩和する手段として、対実データ拡張が出現している。
これらのバイアスは、データ生成プロセスにおいて観測され、観測されていない様々な共役変数によって生じる。
提案手法は,既存の最先端手法が優れた結果を得るのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2023-05-29T16:20:23Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
識別器が過度に適合する傾向があるため、限られたデータでGANを訓練することは困難である。
本稿では,拡張データの拡張パラメータを予測する,拡張型自己教師型識別器を提案する。
本稿では,クラス条件の BigGAN と非条件の StyleGAN2 アーキテクチャを用いた State-of-the-art (SOTA) 手法と比較する。
論文 参考訳(メタデータ) (2022-05-31T10:35:55Z) - Augmentation-induced Consistency Regularization for Classification [25.388324221293203]
我々はCR-Augと呼ばれるデータ拡張に基づく一貫性の規則化フレームワークを提案する。
CR-Augは、データ拡張によって生成された異なるサブモデルの出力分布を互いに整合するように強制する。
画像と音声の分類タスクにCR-Augを実装し、その有効性を検証するために広範な実験を行う。
論文 参考訳(メタデータ) (2022-05-25T03:15:36Z) - CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for
Natural Language Understanding [67.61357003974153]
我々はCoDAと呼ばれる新しいデータ拡張フレームワークを提案する。
CoDAは、複数の変換を有機的に統合することで、多種多様な情報付加例を合成する。
すべてのデータサンプルのグローバルな関係を捉えるために、対照的な正則化の目的を導入する。
論文 参考訳(メタデータ) (2020-10-16T23:57:03Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGCは、低リソース環境でより正確で堅牢な学習を実現することを目的とした、新しい生成データ拡張手法である。
G-DAUGCは、バックトランスレーションに基づく既存のデータ拡張手法を一貫して上回っている。
分析の結果,G-DAUGCは多種多様な流線型学習例を産出し,その選択と学習アプローチが性能向上に重要であることが示された。
論文 参考訳(メタデータ) (2020-04-24T06:12:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。