Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography
- URL: http://arxiv.org/abs/2304.13574v1
- Date: Wed, 26 Apr 2023 14:11:04 GMT
- Title: Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography
- Authors: Debayan Bhattacharya, Sarah Latus, Finn Behrendt, Florin Thimm, Dennis
Eggert, Christian Betz, Alexander Schlaefer
- Abstract summary: We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
- Score: 53.38589633687604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Needle positioning is essential for various medical applications such as
epidural anaesthesia. Physicians rely on their instincts while navigating the
needle in epidural spaces. Thereby, identifying the tissue structures may be
helpful to the physician as they can provide additional feedback in the needle
insertion process. To this end, we propose a deep neural network that
classifies the tissues from the phase and intensity data of complex OCT signals
acquired at the needle tip. We investigate the performance of the deep neural
network in a limited labelled dataset scenario and propose a novel contrastive
pretraining strategy that learns invariant representation for phase and
intensity data. We show that with 10% of the training set, our proposed
pretraining strategy helps the model achieve an F1 score of 0.84 whereas the
model achieves an F1 score of 0.60 without it. Further, we analyse the
importance of phase and intensity individually towards tissue classification.
Related papers
- Less is More: Selective Reduction of CT Data for Self-Supervised Pre-Training of Deep Learning Models with Contrastive Learning Improves Downstream Classification Performance [7.945551345449388]
Current findings indicate a strong potential for contrastive pre-training on medical images.
We hypothesize that the similarity of medical images hinders the success of contrastive learning in the medical imaging domain.
We investigate different strategies based on deep embedding, information theory, and hashing in order to identify and reduce redundancy in medical pre-training datasets.
arXiv Detail & Related papers (2024-10-18T15:08:05Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - White Matter Tracts are Point Clouds: Neuropsychological Score
Prediction and Critical Region Localization via Geometric Deep Learning [68.5548609642999]
We propose a deep-learning-based framework for neuropsychological score prediction using white matter tract data.
We represent the arcuate fasciculus (AF) as a point cloud with microstructure measurements at each point.
We improve prediction performance with the proposed Paired-Siamese Loss that utilizes information about differences between continuous neuropsychological scores.
arXiv Detail & Related papers (2022-07-06T02:03:28Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via
Bayesian Deep Learning [7.535751594024775]
Retinopathy represents a group of retinal diseases that, if not treated timely, can cause severe visual impairments or even blindness.
This paper presents a novel incremental cross-domain adaptation instrument that allows any deep classification model to progressively learn abnormal retinal pathologies.
The proposed framework, evaluated on six public datasets, outperforms the state-of-the-art competitors by achieving an overall accuracy and F1 score of 0.9826 and 0.9846, respectively.
arXiv Detail & Related papers (2021-10-18T13:45:21Z) - A novel optical needle probe for deep learning-based tissue elasticity
characterization [59.698811329287174]
Optical coherence elastography (OCE) probes have been proposed for needle insertions but have so far lacked the necessary load sensing capabilities.
We present a novel OCE needle probe that provides simultaneous optical coherence tomography ( OCT) imaging and load sensing at the needle tip.
arXiv Detail & Related papers (2021-09-20T08:29:29Z) - A hybrid machine learning/deep learning COVID-19 severity predictive
model from CT images and clinical data [0.0]
We developed a hybrid machine learning/deep learning model to classify patients in two outcome categories, non-ICU and ICU.
A fully 3D patient-level CNN classifier on baseline CT images is used as feature extractor.
The model aims to provide clinical decision support to medical doctors, with the probability score of belonging to an outcome class and with case-based SHAP interpretation of features importance.
arXiv Detail & Related papers (2021-05-13T08:39:56Z) - Deeply supervised UNet for semantic segmentation to assist
dermatopathological assessment of Basal Cell Carcinoma (BCC) [2.031570465477242]
We focus on detecting Basal Cell Carcinoma (BCC) through semantic segmentation using several models based on the UNet architecture.
We analyze two different encoders for the first part of the UNet network and two additional training strategies.
The best model achieves over 96%, accuracy, sensitivity, and specificity on the test set.
arXiv Detail & Related papers (2021-03-05T15:39:55Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.