Deeply supervised UNet for semantic segmentation to assist
dermatopathological assessment of Basal Cell Carcinoma (BCC)
- URL: http://arxiv.org/abs/2103.03759v2
- Date: Mon, 8 Mar 2021 21:56:14 GMT
- Title: Deeply supervised UNet for semantic segmentation to assist
dermatopathological assessment of Basal Cell Carcinoma (BCC)
- Authors: Jean Le'Clerc Arrastia, Nick Heilenk\"otter, Daniel Otero Baguer, Lena
Hauberg-Lotte, Tobias Boskamp, Sonja Hetzer, Nicole Duschner, J\"org
Schaller, and Peter Maa{\ss}
- Abstract summary: We focus on detecting Basal Cell Carcinoma (BCC) through semantic segmentation using several models based on the UNet architecture.
We analyze two different encoders for the first part of the UNet network and two additional training strategies.
The best model achieves over 96%, accuracy, sensitivity, and specificity on the test set.
- Score: 2.031570465477242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and fast assessment of resection margins is an essential part of a
dermatopathologist's clinical routine. In this work, we successfully develop a
deep learning method to assist the pathologists by marking critical regions
that have a high probability of exhibiting pathological features in Whole Slide
Images (WSI). We focus on detecting Basal Cell Carcinoma (BCC) through semantic
segmentation using several models based on the UNet architecture. The study
includes 650 WSI with 3443 tissue sections in total. Two clinical
dermatopathologists annotated the data, marking tumor tissues' exact location
on 100 WSI. The rest of the data, with ground-truth section-wise labels, is
used to further validate and test the models. We analyze two different encoders
for the first part of the UNet network and two additional training strategies:
a) deep supervision, b) linear combination of decoder outputs, and obtain some
interpretations about what the network's decoder does in each case. The best
model achieves over 96%, accuracy, sensitivity, and specificity on the test
set.
Related papers
- Towards a Comprehensive Benchmark for Pathological Lymph Node Metastasis in Breast Cancer Sections [21.75452517154339]
We reprocessed 1,399 whole slide images (WSIs) and labels from the Camelyon-16 and Camelyon-17 datasets.
Based on the sizes of re-annotated tumor regions, we upgraded the binary cancer screening task to a four-class task.
arXiv Detail & Related papers (2024-11-16T09:19:24Z) - Bridging the Diagnostic Divide: Classical Computer Vision and Advanced AI methods for distinguishing ITB and CD through CTE Scans [2.900410045439515]
A consensus among radiologists has recognized the visceral-to-subcutaneous fat ratio as a surrogate biomarker for differentiating between ITB and CD.
We propose a novel 2D image computer vision algorithm for auto-segmenting subcutaneous fat to automate this ratio calculation.
We trained a ResNet10 model on a dataset of CTE scans with samples from ITB, CD, and normal patients, achieving an accuracy of 75%.
arXiv Detail & Related papers (2024-10-23T17:05:27Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Meta-information-aware Dual-path Transformer for Differential Diagnosis
of Multi-type Pancreatic Lesions in Multi-phase CT [41.199716328468895]
We develop a dual-path transformer to exploit the feasibility of classification and segmentation of pancreatic lesions.
The proposed method consists of a CNN-based segmentation path (S-path) and a transformer-based classification path (C-path)
Our results show that our method can enable accurate classification and segmentation of the full taxonomy of pancreatic lesions.
arXiv Detail & Related papers (2023-03-02T03:34:28Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
arXiv Detail & Related papers (2022-07-20T06:49:02Z) - Going Deeper through the Gleason Scoring Scale: An Automatic end-to-end
System for Histology Prostate Grading and Cribriform Pattern Detection [7.929433631399375]
The objective of this work is to develop a deep-learning-based system able to support pathologists in the daily analysis of prostate biopsies.
The methodological core of this work is a patch-wise predictive model based on convolutional neural networks able to determine the presence of cancerous patterns.
arXiv Detail & Related papers (2021-05-21T17:51:53Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.