Synthetic Aperture Anomaly Imaging
- URL: http://arxiv.org/abs/2304.13590v1
- Date: Wed, 26 Apr 2023 14:34:43 GMT
- Title: Synthetic Aperture Anomaly Imaging
- Authors: Rakesh John Amala Arokia Nathan and Oliver Bimber
- Abstract summary: We show that integrating detected anomalies is even more effective than detecting anomalies in integrals.
We present a real-time application that makes our findings practically available for blue-light organizations and others using commercial drone platforms.
- Score: 2.9443230571766854
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Previous research has shown that in the presence of foliage occlusion,
anomaly detection performs significantly better in integral images resulting
from synthetic aperture imaging compared to applying it to conventional aerial
images. In this article, we hypothesize and demonstrate that integrating
detected anomalies is even more effective than detecting anomalies in
integrals. This results in enhanced occlusion removal, outlier suppression, and
higher chances of visually as well as computationally detecting targets that
are otherwise occluded. Our hypothesis was validated through both: simulations
and field experiments. We also present a real-time application that makes our
findings practically available for blue-light organizations and others using
commercial drone platforms. It is designed to address use-cases that suffer
from strong occlusion caused by vegetation, such as search and rescue, wildlife
observation, early wildfire detection, and sur-veillance.
Related papers
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Diffusion Facial Forgery Detection [56.69763252655695]
This paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images.
We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods.
The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%.
arXiv Detail & Related papers (2024-01-29T03:20:19Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Evaluation of Color Anomaly Detection in Multispectral Images For
Synthetic Aperture Sensing [4.640835690336653]
We evaluate unsupervised anomaly detection methods in multispectral images obtained with a wavelength-independent synthetic aperture sensing technique.
We show that color anomaly detection methods that normally operate in the visual range always benefit from an additional far infrared (thermal) channel.
arXiv Detail & Related papers (2022-11-08T15:01:14Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - On the Role of Field of View for Occlusion Removal with Airborne Optical
Sectioning [3.5232085374661284]
Occlusion caused by vegetation is an essential problem for remote sensing applications in areas.
Airborne Optical Sectioning (AOS) is an optical, wavelength-independent synthetic aperture imaging technique.
We demonstrate a relationship between forest density and field of view (FOV) of applied imaging systems.
arXiv Detail & Related papers (2022-04-28T09:26:10Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - Search and Rescue with Airborne Optical Sectioning [7.133136338850781]
We show that automated person detection can be significantly improved by combining multi-perspective images before classification.
Findings lay the foundation for effective future search and rescue technologies that can be applied in combination with autonomous or manned aircraft.
arXiv Detail & Related papers (2020-09-18T13:40:19Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
We propose a One-for-all Image Anomaly Detection system based on disentangled learning using only clean samples.
Our experiments with three datasets show that OIAD can detect over $90%$ of anomalies while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-01-18T09:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.