Fairness Uncertainty Quantification: How certain are you that the model
is fair?
- URL: http://arxiv.org/abs/2304.13950v1
- Date: Thu, 27 Apr 2023 04:07:58 GMT
- Title: Fairness Uncertainty Quantification: How certain are you that the model
is fair?
- Authors: Abhishek Roy, Prasant Mohapatra
- Abstract summary: In modern machine learning, Gradient Descent (SGD) type algorithms are almost always used as training algorithms implying that the learned model, and consequently, its fairness properties are random.
In this work we provide Confidence Interval (CI) for test unfairness when a group-fairness-aware, specifically, Disparate Impact (DI), and Disparate Mistreatment (DM) aware linear binary classifier is trained using online SGD-type algorithms.
- Score: 13.209748908186606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness-aware machine learning has garnered significant attention in recent
years because of extensive use of machine learning in sensitive applications
like judiciary systems. Various heuristics, and optimization frameworks have
been proposed to enforce fairness in classification \cite{del2020review} where
the later approaches either provides empirical results or provides fairness
guarantee for the exact minimizer of the objective function
\cite{celis2019classification}. In modern machine learning, Stochastic Gradient
Descent (SGD) type algorithms are almost always used as training algorithms
implying that the learned model, and consequently, its fairness properties are
random. Hence, especially for crucial applications, it is imperative to
construct Confidence Interval (CI) for the fairness of the learned model. In
this work we provide CI for test unfairness when a group-fairness-aware,
specifically, Disparate Impact (DI), and Disparate Mistreatment (DM) aware
linear binary classifier is trained using online SGD-type algorithms. We show
that asymptotically a Central Limit Theorem holds for the estimated model
parameter of both DI and DM-aware models. We provide online multiplier
bootstrap method to estimate the asymptotic covariance to construct online CI.
To do so, we extend the known theoretical guarantees shown on the consistency
of the online bootstrap method for unconstrained SGD to constrained
optimization which could be of independent interest. We illustrate our results
on synthetic and real datasets.
Related papers
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Blending gradient boosted trees and neural networks for point and
probabilistic forecasting of hierarchical time series [0.0]
We describe a blending methodology of machine learning models that belong to gradient boosted trees and neural networks families.
These principles were successfully applied in the recent M5 Competition on both Accuracy and Uncertainty tracks.
arXiv Detail & Related papers (2023-10-19T09:42:02Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
We show how optimistic exploration can be easily combined with state-of-the-art reinforcement learning algorithms.
Our experiments demonstrate that optimistic exploration significantly speeds-up learning when there are penalties on actions.
arXiv Detail & Related papers (2020-06-15T18:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.