A Review of Panoptic Segmentation for Mobile Mapping Point Clouds
- URL: http://arxiv.org/abs/2304.13980v2
- Date: Thu, 17 Aug 2023 19:19:51 GMT
- Title: A Review of Panoptic Segmentation for Mobile Mapping Point Clouds
- Authors: Binbin Xiang, Yuanwen Yue, Torben Peters, Konrad Schindler
- Abstract summary: 3D point cloud panoptic segmentation is the combined task to (i) assign each point to a semantic class and (ii) separate the points in each class into object instances.
Recently there has been an increased interest in such comprehensive 3D scene understanding, building on the rapid advances of semantic segmentation.
Yet, to date there is very little work about panoptic segmentation of outdoor mobile-mapping data, and no systematic comparisons.
- Score: 16.78395191633382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D point cloud panoptic segmentation is the combined task to (i) assign each
point to a semantic class and (ii) separate the points in each class into
object instances. Recently there has been an increased interest in such
comprehensive 3D scene understanding, building on the rapid advances of
semantic segmentation due to the advent of deep 3D neural networks. Yet, to
date there is very little work about panoptic segmentation of outdoor
mobile-mapping data, and no systematic comparisons. The present paper tries to
close that gap. It reviews the building blocks needed to assemble a panoptic
segmentation pipeline and the related literature. Moreover, a modular pipeline
is set up to perform comprehensive, systematic experiments to assess the state
of panoptic segmentation in the context of street mapping. As a byproduct, we
also provide the first public dataset for that task, by extending the NPM3D
dataset to include instance labels. That dataset and our source code are
publicly available. We discuss which adaptations are need to adapt current
panoptic segmentation methods to outdoor scenes and large objects. Our study
finds that for mobile mapping data, KPConv performs best but is slower, while
PointNet++ is fastest but performs significantly worse. Sparse CNNs are in
between. Regardless of the backbone, Instance segmentation by clustering
embedding features is better than using shifted coordinates.
Related papers
- Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graph is a novel scene representation for open-vocabulary 3D scene understanding.
An adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape.
arXiv Detail & Related papers (2024-11-25T10:14:10Z) - LESS: Label-Efficient and Single-Stage Referring 3D Segmentation [55.06002976797879]
Referring 3D is a visual-language task that segments all points of the specified object from a 3D point cloud described by a sentence of query.
We propose a novel Referring 3D pipeline, Label-Efficient and Single-Stage, dubbed LESS, which is only under the supervision of efficient binary mask.
We achieve state-of-the-art performance on ScanRefer dataset by surpassing the previous methods about 3.7% mIoU using only binary labels.
arXiv Detail & Related papers (2024-10-17T07:47:41Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - Towards accurate instance segmentation in large-scale LiDAR point clouds [17.808580509435565]
Panoptic segmentation is the combination of semantic and instance segmentation.
This study explores the steps of the panoptic segmentation pipeline concerned with clustering points into object instances.
We find that a carefully designed clustering strategy, which leverages multiple types of learned point embeddings, significantly improves instance segmentation.
arXiv Detail & Related papers (2023-07-06T09:29:03Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
Given a 3D object, kinematic motion prediction aims to identify the mobile parts as well as the corresponding motion parameters.
We propose a graph neural network to learn the map between hierarchical part-level segmentation and mobile parts parameters.
The network predictions yield a large scale of 3D objects with pseudo labeled mobility information.
arXiv Detail & Related papers (2023-03-31T02:37:36Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
We propose a simple yet effective approach for unsupervised point cloud learning.
In particular, we identify a very useful transformation which generates a good contrastive version of an original point cloud.
We conduct experiments on three downstream tasks which are 3D object classification, shape part segmentation and scene segmentation.
arXiv Detail & Related papers (2021-10-13T10:52:45Z) - LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices [27.048998326468688]
Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images.
Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input.
We present results of 3D segmentation on multiple datasets where our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-08-09T10:17:27Z) - LRGNet: Learnable Region Growing for Class-Agnostic Point Cloud
Segmentation [19.915593390338337]
This research proposes a learnable region growing method for class-agnostic point cloud segmentation.
The proposed method is able to segment any class of objects using a single deep neural network without any assumptions about their shapes and sizes.
arXiv Detail & Related papers (2021-03-16T15:58:01Z) - PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation [96.76882806139251]
We propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow.
Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features.
Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods.
arXiv Detail & Related papers (2021-03-11T09:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.