Towards accurate instance segmentation in large-scale LiDAR point clouds
- URL: http://arxiv.org/abs/2307.02877v1
- Date: Thu, 6 Jul 2023 09:29:03 GMT
- Title: Towards accurate instance segmentation in large-scale LiDAR point clouds
- Authors: Binbin Xiang, Torben Peters, Theodora Kontogianni, Frawa Vetterli,
Stefano Puliti, Rasmus Astrup, Konrad Schindler
- Abstract summary: Panoptic segmentation is the combination of semantic and instance segmentation.
This study explores the steps of the panoptic segmentation pipeline concerned with clustering points into object instances.
We find that a carefully designed clustering strategy, which leverages multiple types of learned point embeddings, significantly improves instance segmentation.
- Score: 17.808580509435565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Panoptic segmentation is the combination of semantic and instance
segmentation: assign the points in a 3D point cloud to semantic categories and
partition them into distinct object instances. It has many obvious applications
for outdoor scene understanding, from city mapping to forest management.
Existing methods struggle to segment nearby instances of the same semantic
category, like adjacent pieces of street furniture or neighbouring trees, which
limits their usability for inventory- or management-type applications that rely
on object instances. This study explores the steps of the panoptic segmentation
pipeline concerned with clustering points into object instances, with the goal
to alleviate that bottleneck. We find that a carefully designed clustering
strategy, which leverages multiple types of learned point embeddings,
significantly improves instance segmentation. Experiments on the NPM3D urban
mobile mapping dataset and the FOR-instance forest dataset demonstrate the
effectiveness and versatility of the proposed strategy.
Related papers
- LISNeRF Mapping: LiDAR-based Implicit Mapping via Semantic Neural Fields for Large-Scale 3D Scenes [2.822816116516042]
Large-scale semantic mapping is crucial for outdoor autonomous agents to fulfill high-level tasks such as planning and navigation.
This paper proposes a novel method for large-scale 3D semantic reconstruction through implicit representations from posed LiDAR measurements alone.
arXiv Detail & Related papers (2023-11-04T03:55:38Z) - Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
We propose a detection-centric network for lidar segmentation and tracking.
One of the core components of our network is the object instance detection branch.
We evaluate our method on several 3D/4D LPS benchmarks and observe that our model establishes a new state-of-the-art among open-sourced models.
arXiv Detail & Related papers (2023-10-19T04:44:43Z) - Active Pointly-Supervised Instance Segmentation [106.38955769817747]
We present an economic active learning setting, named active pointly-supervised instance segmentation (APIS)
APIS starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object.
The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset.
arXiv Detail & Related papers (2022-07-23T11:25:24Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
We propose a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation.
SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on the COCO benchmark.
arXiv Detail & Related papers (2022-03-24T03:15:39Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
"instance categories" assigns categories to each pixel within an instance according to the instance's location.
"SOLO" is a simple, direct, and fast framework for instance segmentation with strong performance.
Our approach achieves state-of-the-art results for instance segmentation in terms of both speed and accuracy.
arXiv Detail & Related papers (2021-06-30T09:56:54Z) - LRGNet: Learnable Region Growing for Class-Agnostic Point Cloud
Segmentation [19.915593390338337]
This research proposes a learnable region growing method for class-agnostic point cloud segmentation.
The proposed method is able to segment any class of objects using a single deep neural network without any assumptions about their shapes and sizes.
arXiv Detail & Related papers (2021-03-16T15:58:01Z) - SASO: Joint 3D Semantic-Instance Segmentation via Multi-scale Semantic
Association and Salient Point Clustering Optimization [8.519716460338518]
We propose a novel 3D point cloud segmentation framework named SASO, which jointly performs semantic and instance segmentation tasks.
For semantic segmentation task, inspired by the inherent correlation among objects in spatial context, we propose a Multi-scale Semantic Association (MSA) module.
For instance segmentation task, different from previous works that utilize clustering only in inference procedure, we propose a Salient Point Clustering Optimization (SPCO) module.
arXiv Detail & Related papers (2020-06-25T08:55:25Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
We propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method.
Our proposed method shows significant and consistent improvements compared to baselines in different few-shot point cloud semantic segmentation settings.
arXiv Detail & Related papers (2020-06-22T08:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.