論文の概要: Adaptive manifold for imbalanced transductive few-shot learning
- arxiv url: http://arxiv.org/abs/2304.14281v1
- Date: Thu, 27 Apr 2023 15:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 12:49:39.749735
- Title: Adaptive manifold for imbalanced transductive few-shot learning
- Title(参考訳): 不均衡トランスダクティブ・ショット学習のための適応多様体
- Authors: Michalis Lazarou, Yannis Avrithis, Tania Stathaki
- Abstract要約: 適応マニフォールド(Adaptive Manifold)という,不均衡なトランスダクティブ・ショット・ラーニングに対処する新しいアルゴリズムを提案する。
提案手法は,ラベル付きサポート例とラベルなしクエリの基盤となる多様体を利用して,クエリごとのクラス確率分布を予測する。
- 参考スコア(独自算出の注目度): 16.627512688664513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transductive few-shot learning algorithms have showed substantially superior
performance over their inductive counterparts by leveraging the unlabeled
queries. However, the vast majority of such methods are evaluated on perfectly
class-balanced benchmarks. It has been shown that they undergo remarkable drop
in performance under a more realistic, imbalanced setting. To this end, we
propose a novel algorithm to address imbalanced transductive few-shot learning,
named Adaptive Manifold. Our method exploits the underlying manifold of the
labeled support examples and unlabeled queries by using manifold similarity to
predict the class probability distribution per query. It is parameterized by
one centroid per class as well as a set of graph-specific parameters that
determine the manifold. All parameters are optimized through a loss function
that can be tuned towards class-balanced or imbalanced distributions. The
manifold similarity shows substantial improvement over Euclidean distance,
especially in the 1-shot setting. Our algorithm outperforms or is on par with
other state of the art methods in three benchmark datasets, namely
miniImageNet, tieredImageNet and CUB, and three different backbones, namely
ResNet-18, WideResNet-28-10 and DenseNet-121. In certain cases, our algorithm
outperforms the previous state of the art by as much as 4.2%.
- Abstract(参考訳): トランスダクティブな少数ショット学習アルゴリズムは、ラベルなしクエリを利用することで、インダクティブなアルゴリズムよりも大幅に優れたパフォーマンスを示している。
しかし、これらのメソッドの大部分は、完全なクラスバランスのベンチマークで評価される。
よりリアルでバランスの取れない環境で、パフォーマンスが著しく低下していることが示されている。
そこで本研究では,適応マニフォールド(Adaptive Manifold)という,不均衡なトランスダクティブ・ショット学習を実現する新しいアルゴリズムを提案する。
提案手法は,ラベル付きサポート例とラベルなしクエリの基盤となる多様体を利用して,クエリごとのクラス確率分布を予測する。
クラス毎の1セントロイドと、多様体を決定するグラフ固有のパラメータの集合によってパラメータ化される。
すべてのパラメータは、クラスバランスや不均衡な分布に調整可能な損失関数によって最適化される。
多様体の類似性はユークリッド距離、特に1ショット設定において著しく改善されている。
我々のアルゴリズムは, miniImageNet, tieredImageNet, CUBという3つのベンチマークデータセットと, ResNet-18, WideResNet-28-10, DenseNet-121という3つのバックボーンにおいて,他の手法よりも優れているか,あるいは同等である。
ある場合には、我々のアルゴリズムは、以前の芸術の状態を最大4.2%上回っている。
関連論文リスト
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
最適公正表現はいくつかの有用な構造特性を持つことを示す。
そこで,これらの近似問題は,凹凸プログラミング法により効率的に解けることを示す。
論文 参考訳(メタデータ) (2024-09-26T08:46:48Z) - Unsupervised Representation Learning by Balanced Self Attention Matching [2.3020018305241337]
本稿では,BAMと呼ばれる画像特徴を埋め込む自己教師型手法を提案する。
我々は,これらの分布とグローバルな均衡とエントロピー正規化バージョンに一致する損失を最小化することにより,豊かな表現と特徴の崩壊を回避する。
半教師付きベンチマークと移動学習ベンチマークの両方において,先行手法と競合する性能を示す。
論文 参考訳(メタデータ) (2024-08-04T12:52:44Z) - Transductive Zero-Shot and Few-Shot CLIP [24.592841797020203]
本稿では,トランスダクティブなゼロショットと少数ショットのCLIP分類問題に対処する。
推論は、各インスタンスを独立して扱うのではなく、ラベルのないクエリサンプルのミニバッチで共同で実行される。
提案手法は,CLIPのゼロショット性能に対して,画像ネットの精度を約20%向上させる。
論文 参考訳(メタデータ) (2024-04-08T12:44:31Z) - Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning [0.0]
クロスドメインの少ショット分類は、それまで見つからなかった領域で新しいクラスを学ぶという難しい課題を示す。
我々は,小データセット上の多数のパラメータの微調整に伴うオーバーフィッティングに対処する,軽量なパラメータ効率適応手法を提案する。
我々は,従来の遠心波を識別的サンプル認識損失関数に置き換え,クラス間およびクラス内分散に対するモデルの感度を高める。
論文 参考訳(メタデータ) (2024-03-07T13:49:29Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Realistic Evaluation of Transductive Few-Shot Learning [41.06192162435249]
トランスダクティブ推論は、数ショットの学習で広く使われている。
推論における少数ショットタスクの問合せセット内における任意のクラス分布の効果について検討する。
我々は,3つの広く使用されているデータセットに対して,最先端のトランスダクティブ手法を実験的に評価した。
論文 参考訳(メタデータ) (2022-04-24T03:35:06Z) - The Interplay between Distribution Parameters and the
Accuracy-Robustness Tradeoff in Classification [0.0]
アドリラルトレーニングは、通常のモデルに比べて自然(未成熟)の例では正確でないモデルをもたらす傾向にある。
これは、アルゴリズムの欠点か、トレーニングデータ分散の基本的な性質によるものとみなすことができる。
本研究では,二進ガウス混合分類問題の下で後者のケースに焦点をあてる。
論文 参考訳(メタデータ) (2021-07-01T06:57:50Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Learning Condition Invariant Features for Retrieval-Based Localization
from 1M Images [85.81073893916414]
我々は、より正確で、より一般化されたローカライゼーション特徴を学習する新しい方法を開発した。
難易度の高いオックスフォード・ロボットカーの夜間条件では、5m以内の局所化精度でよく知られた三重項損失を24.4%上回っている。
論文 参考訳(メタデータ) (2020-08-27T14:46:22Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。