Distributional Depth-Based Estimation of Object Articulation Models
- URL: http://arxiv.org/abs/2108.05875v1
- Date: Thu, 12 Aug 2021 17:44:51 GMT
- Title: Distributional Depth-Based Estimation of Object Articulation Models
- Authors: Ajinkya Jain, Stephen Giguere, Rudolf Lioutikov and Scott Niekum
- Abstract summary: We propose a method that efficiently learns distributions over articulation model parameters directly from depth images.
Our core contributions include a novel representation for distributions over rigid body transformations.
We introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation.
- Score: 21.046351215949525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method that efficiently learns distributions over articulation
model parameters directly from depth images without the need to know
articulation model categories a priori. By contrast, existing methods that
learn articulation models from raw observations typically only predict point
estimates of the model parameters, which are insufficient to guarantee the safe
manipulation of articulated objects. Our core contributions include a novel
representation for distributions over rigid body transformations and
articulation model parameters based on screw theory, von Mises-Fisher
distributions, and Stiefel manifolds. Combining these concepts allows for an
efficient, mathematically sound representation that implicitly satisfies the
constraints that rigid body transformations and articulations must adhere to.
Leveraging this representation, we introduce a novel deep learning based
approach, DUST-net, that performs category-independent articulation model
estimation while also providing model uncertainties. We evaluate our approach
on several benchmarking datasets and real-world objects and compare its
performance with two current state-of-the-art methods. Our results demonstrate
that DUST-net can successfully learn distributions over articulation models for
novel objects across articulation model categories, which generate point
estimates with better accuracy than state-of-the-art methods and effectively
capture the uncertainty over predicted model parameters due to noisy inputs.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
Concept Bottleneck Models (CBMs) can provide a principled way of disclosing and guiding model behaviors through human-understandable concepts.
We propose a novel framework designed to exploit pre-trained models while being immune to these biases, thereby reducing vulnerability to spurious correlations.
We evaluate the proposed method on multiple datasets, and the results demonstrate its effectiveness in reducing model reliance on spurious correlations while preserving its interpretability.
arXiv Detail & Related papers (2024-07-12T03:07:28Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Comparing Foundation Models using Data Kernels [13.099029073152257]
We present a methodology for directly comparing the embedding space geometry of foundation models.
Our methodology is grounded in random graph theory and enables valid hypothesis testing of embedding similarity.
We show how our framework can induce a manifold of models equipped with a distance function that correlates strongly with several downstream metrics.
arXiv Detail & Related papers (2023-05-09T02:01:07Z) - Evaluating Representations with Readout Model Switching [18.475866691786695]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - ScrewNet: Category-Independent Articulation Model Estimation From Depth
Images Using Screw Theory [23.861024692501083]
ScrewNet is a novel approach that estimates an object's articulation model directly from depth images.
We evaluate our approach on two benchmarking datasets and compare its performance with a current state-of-the-art method.
arXiv Detail & Related papers (2020-08-24T15:41:23Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.