論文の概要: MarsEclipse at SemEval-2023 Task 3: Multi-Lingual and Multi-Label
Framing Detection with Contrastive Learning
- arxiv url: http://arxiv.org/abs/2304.14339v1
- Date: Thu, 20 Apr 2023 18:42:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 07:11:16.911687
- Title: MarsEclipse at SemEval-2023 Task 3: Multi-Lingual and Multi-Label
Framing Detection with Contrastive Learning
- Title(参考訳): MarsEclipse at SemEval-2023 Task 3: コントラスト学習による多言語・多言語フラーミング検出
- Authors: Qisheng Liao, Meiting Lai, Preslav Nakov
- Abstract要約: 本稿では,SemEval-2023 Task 3 Subtask 2 on Framing Detectionについて述べる。
我々は,多言語環境下での大規模事前学習言語モデルの微調整に,マルチラベルのコントラスト損失を用いた。
本システムは,6言語のうち5言語について,公式テストセットと共有タスクリーダーボードで第1位にランクインした。
- 参考スコア(独自算出の注目度): 21.616089539381996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes our system for SemEval-2023 Task 3 Subtask 2 on Framing
Detection. We used a multi-label contrastive loss for fine-tuning large
pre-trained language models in a multi-lingual setting, achieving very
competitive results: our system was ranked first on the official test set and
on the official shared task leaderboard for five of the six languages for which
we had training data and for which we could perform fine-tuning. Here, we
describe our experimental setup, as well as various ablation studies. The code
of our system is available at https://github.com/QishengL/SemEval2023
- Abstract(参考訳): 本稿では,SemEval-2023 Task 3 Subtask 2 on Framing Detectionについて述べる。
我々は、多言語環境での大規模事前学習言語モデルの微調整にマルチラベルのコントラストロスを使用し、非常に競争力のある結果を得た:我々のシステムは、公式テストセットと、トレーニングデータを持ち、微調整を行うことができる6つの言語のうち5つの言語の公式タスクリーダーボードにランク付けされた。
ここでは,実験装置と各種アブレーション研究について述べる。
システムのコードはhttps://github.com/QishengL/SemEval2023で公開されている。
関連論文リスト
- DeMuX: Data-efficient Multilingual Learning [57.37123046817781]
DEMUXは、大量の重複しない多言語データからラベルを付けるための正確なデータポイントを規定するフレームワークである。
エンドツーエンドのフレームワークは言語に依存しず、モデル表現を記述し、多言語的ターゲット設定をサポートしています。
論文 参考訳(メタデータ) (2023-11-10T20:09:08Z) - CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task
Information Retrieval [5.97515243922116]
本稿では,多言語多タスク情報検索におけるMRL2023共有タスクのためのチャールズ大学システムを提案する。
共有タスクの目的は、いくつかの未表現言語で名前付きエンティティ認識と質問応答のためのシステムを開発することである。
両方のサブタスクに対する私たちのソリューションは、翻訳テストのアプローチに依存しています。
論文 参考訳(メタデータ) (2023-10-25T10:22:49Z) - Unify word-level and span-level tasks: NJUNLP's Participation for the
WMT2023 Quality Estimation Shared Task [59.46906545506715]
我々は、WMT 2023 Quality Estimation (QE)共有タスクにNJUNLPチームを紹介する。
私たちのチームは2つのサブタスクすべてで英語とドイツ語のペアの予測を提出しました。
我々のモデルは、単語レベルと細粒度エラースパン検出サブタスクの両方において、英語とドイツ語で最高の結果を得た。
論文 参考訳(メタデータ) (2023-09-23T01:52:14Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR)は、幅広いタスクのデモを検索する単一のモデルである。
我々は,高品質な候補を見つけるための反復的なマイニング戦略を備えたマルチタスクリストワイド・トレーニング・フレームワークを提案する。
13のタスクファミリーと複数のデータドメインにわたる30以上のタスクの実験は、UDRがベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-07T16:07:11Z) - KInITVeraAI at SemEval-2023 Task 3: Simple yet Powerful Multilingual
Fine-Tuning for Persuasion Techniques Detection [0.0]
本稿では,サブタスク3のSemEval 2023タスク3に対して,説得技術検出専用の最高のパフォーマンスソリューションを提案する。
入力データの多言語的特性が高く,23の予測ラベルが多数存在するため,学習前のトランスフォーマベース言語モデルに微調整を施した。
論文 参考訳(メタデータ) (2023-04-24T09:06:43Z) - Multi-Level Contrastive Learning for Dense Prediction Task [59.591755258395594]
本稿では,高密度予測タスクのための領域レベルの特徴表現を効率よく学習するための,MCL(Multi-Level Contrastive Learning for Dense Prediction Task)を提案する。
本手法は, 局所化, スケールの整合性, 認識の3つの要因に動機付けられている。
提案手法は,様々なデータセットにおける最近の最先端の手法よりも有意なマージンを有する。
論文 参考訳(メタデータ) (2023-04-04T17:59:04Z) - Hitachi at SemEval-2023 Task 3: Exploring Cross-lingual Multi-task
Strategies for Genre and Framing Detection in Online News [10.435874177179764]
本稿では,日立チームによるSemEval-2023タスク3への参加について解説する。
本研究では,事前学習した言語モデルの学習のための多言語・多タスク戦略について検討した。
結果からアンサンブルモデルを構築し,イタリアおよびロシアのジャンル分類サブタスクにおいて,マクロ平均F1スコアを達成した。
論文 参考訳(メタデータ) (2023-03-03T09:12:55Z) - 1Cademy at Semeval-2022 Task 1: Investigating the Effectiveness of
Multilingual, Multitask, and Language-Agnostic Tricks for the Reverse
Dictionary Task [13.480318097164389]
本稿では,SemEval2022タスクの逆辞書トラックに着目し,単語の埋め込みと辞書のグルースをマッチングする。
モデルは文の入力をSGNS、Char、Electraの3種類の埋め込みに変換する。
提案するElmoベースの単言語モデルが最も高い結果を得る。
論文 参考訳(メタデータ) (2022-06-08T06:39:04Z) - HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with
Data Augmentation for Multilingual News Similarity [16.454545004093735]
本稿では,SemEval-2022 Task 8: Multilingual News Article similarityについて述べる。
我々は,いくつかのタスク固有の戦略で訓練された言語モデルを提案した。
Pearson's correlation Coefficient of 0.818 on the official evaluation set。
論文 参考訳(メタデータ) (2022-04-11T03:08:37Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - Intent Classification Using Pre-Trained Embeddings For Low Resource
Languages [67.40810139354028]
言語固有の音声認識に依存しない音声理解システムを構築することは、言語処理において重要でない問題である。
本稿では,事前学習した音響モデルを用いて,低資源シナリオにおける音声言語理解を実現するための比較研究を提案する。
私たちは、ハイ、ミディアム、低リソースシナリオをシミュレートするために、それぞれ異なるデータサイズを持つ英語、Sinhala、Tamilの3つの異なる言語で実験を行います。
論文 参考訳(メタデータ) (2021-10-18T13:06:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。