OriCon3D: Effective 3D Object Detection using Orientation and Confidence
- URL: http://arxiv.org/abs/2304.14484v3
- Date: Wed, 3 Jan 2024 06:34:30 GMT
- Title: OriCon3D: Effective 3D Object Detection using Orientation and Confidence
- Authors: Dhyey Manish Rajani, Surya Pratap Singh, Rahul Kashyap Swayampakula
- Abstract summary: We propose an advanced methodology for the detection of 3D objects from a single image.
We use a deep convolutional neural network-based 3D object weighted orientation regression paradigm.
Our approach significantly improves the accuracy of 3D object pose determination, surpassing baseline methodologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an advanced methodology for the detection of 3D
objects and precise estimation of their spatial positions from a single image.
Unlike conventional frameworks that rely solely on center-point and dimension
predictions, our research leverages a deep convolutional neural network-based
3D object weighted orientation regression paradigm. These estimates are then
seamlessly integrated with geometric constraints obtained from a 2D bounding
box, resulting in derivation of a comprehensive 3D bounding box. Our novel
network design encompasses two key outputs. The first output involves the
estimation of 3D object orientation through the utilization of a
discrete-continuous loss function. Simultaneously, the second output predicts
objectivity-based confidence scores with minimal variance. Additionally, we
also introduce enhancements to our methodology through the incorporation of
lightweight residual feature extractors. By combining the derived estimates
with the geometric constraints inherent in the 2D bounding box, our approach
significantly improves the accuracy of 3D object pose determination, surpassing
baseline methodologies. Our method is rigorously evaluated on the KITTI 3D
object detection benchmark, demonstrating superior performance.
Related papers
- OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods.
This paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting.
Experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes.
arXiv Detail & Related papers (2021-09-25T02:55:05Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Joint Spatial-Temporal Optimization for Stereo 3D Object Tracking [34.40019455462043]
We propose a joint spatial-temporal optimization-based stereo 3D object tracking method.
From the network, we detect corresponding 2D bounding boxes on adjacent images and regress an initial 3D bounding box.
Dense object cues that associating to the object centroid are then predicted using a region-based network.
arXiv Detail & Related papers (2020-04-20T13:59:46Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.