Deep Spatiotemporal Clustering: A Temporal Clustering Approach for
Multi-dimensional Climate Data
- URL: http://arxiv.org/abs/2304.14541v2
- Date: Wed, 13 Sep 2023 19:10:18 GMT
- Title: Deep Spatiotemporal Clustering: A Temporal Clustering Approach for
Multi-dimensional Climate Data
- Authors: Omar Faruque, Francis Ndikum Nji, Mostafa Cham, Rohan Mandar Salvi,
Xue Zheng, and Jianwu Wang
- Abstract summary: We propose a novel algorithm for high-dimensional temporal representation of data using an unsupervised deep learning method.
Inspired by U-net architecture, our algorithm utilizes an autoencoder integrating CNN-RNN layers to learn latent representations.
Our experiments show our approach outperforms both conventional and deep learning-based unsupervised clustering algorithms.
- Score: 0.353122873734926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering high-dimensional spatiotemporal data using an unsupervised
approach is a challenging problem for many data-driven applications. Existing
state-of-the-art methods for unsupervised clustering use different similarity
and distance functions but focus on either spatial or temporal features of the
data. Concentrating on joint deep representation learning of spatial and
temporal features, we propose Deep Spatiotemporal Clustering (DSC), a novel
algorithm for the temporal clustering of high-dimensional spatiotemporal data
using an unsupervised deep learning method. Inspired by the U-net architecture,
DSC utilizes an autoencoder integrating CNN-RNN layers to learn latent
representations of the spatiotemporal data. DSC also includes a unique layer
for cluster assignment on latent representations that uses the Student's
t-distribution. By optimizing the clustering loss and data reconstruction loss
simultaneously, the algorithm gradually improves clustering assignments and the
nonlinear mapping between low-dimensional latent feature space and
high-dimensional original data space. A multivariate spatiotemporal climate
dataset is used to evaluate the efficacy of the proposed method. Our extensive
experiments show our approach outperforms both conventional and deep
learning-based unsupervised clustering algorithms. Additionally, we compared
the proposed model with its various variants (CNN encoder, CNN autoencoder,
CNN-RNN encoder, CNN-RNN autoencoder, etc.) to get insight into using both the
CNN and RNN layers in the autoencoder, and our proposed technique outperforms
these variants in terms of clustering results.
Related papers
- Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
arXiv Detail & Related papers (2024-05-08T12:31:35Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
We propose a novel semantic compression method, autoencoder-based CNN architecture (AECNN) for effective semantic extraction and compression in partial offloading.
In the semantic encoder, we introduce a feature compression module based on the channel attention mechanism in CNNs, to compress intermediate data by selecting the most informative features.
In the semantic decoder, we design a lightweight decoder to reconstruct the intermediate data through learning from the received compressed data to improve accuracy.
arXiv Detail & Related papers (2024-01-19T15:19:47Z) - Exploiting Spatial-temporal Data for Sleep Stage Classification via
Hypergraph Learning [16.802013781690402]
We propose a dynamic learning framework STHL, which introduces hypergraph to encode spatial-temporal data for sleep stage classification.
Our proposed STHL outperforms the state-of-the-art models in sleep stage classification tasks.
arXiv Detail & Related papers (2023-09-05T11:01:30Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Clustering of Time Series Data with Prior Geographical Information [0.26651200086513094]
We propose a spatial-temporal clustering model, where time series data based on spatial and temporal contexts.
The proposed model Spatial-DEC (S-DEC) use prior geographical information in building latent feature representations.
The results show that the proposed Spatial-DEC can find more desired-temporal clusters.
arXiv Detail & Related papers (2021-07-03T00:19:17Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Overcomplete Deep Subspace Clustering Networks [80.16644725886968]
Experimental results on four benchmark datasets show the effectiveness of the proposed method over DSC and other clustering methods in terms of clustering error.
Our method is also not as dependent as DSC is on where pre-training should be stopped to get the best performance and is also more robust to noise.
arXiv Detail & Related papers (2020-11-16T22:07:18Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.