Concrete Dense Network for Long-Sequence Time Series Clustering
- URL: http://arxiv.org/abs/2405.05015v1
- Date: Wed, 8 May 2024 12:31:35 GMT
- Title: Concrete Dense Network for Long-Sequence Time Series Clustering
- Authors: Redemptor Jr Laceda Taloma, Patrizio Pisani, Danilo Comminiello,
- Abstract summary: Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
- Score: 4.307648859471193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series clustering is fundamental in data analysis for discovering temporal patterns. Despite recent advancements, learning cluster-friendly representations is still challenging, particularly with long and complex time series. Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks but fall back on surrogate losses due to the non-differentiability of the hard cluster assignment, yielding sub-optimal solutions. In addition, the autoregressive strategy used in the state-of-the-art RNNs is subject to error accumulation and slow training, while recent research findings have revealed that Transformers are less effective due to time points lacking semantic meaning, to the permutation invariance of attention that discards the chronological order and high computation cost. In light of these observations, we present LoSTer which is a novel dense autoencoder architecture for the long-sequence time series clustering problem (LSTC) capable of optimizing the k-means objective via the Gumbel-softmax reparameterization trick and designed specifically for accurate and fast clustering of long time series. Extensive experiments on numerous benchmark datasets and two real-world applications prove the effectiveness of LoSTer over state-of-the-art RNNs and Transformer-based deep clustering methods.
Related papers
- Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
We introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder.
Our proposed method exceeds the performance of its supervised counterparts.
arXiv Detail & Related papers (2024-03-25T17:40:32Z) - Time-Parameterized Convolutional Neural Networks for Irregularly Sampled
Time Series [26.77596449192451]
Irregularly sampled time series are ubiquitous in several application domains, leading to sparse, not fully-observed and non-aligned observations.
Standard sequential neural networks (RNNs) and convolutional neural networks (CNNs) consider regular spacing between observation times, posing significant challenges to irregular time series modeling.
We parameterize convolutional layers by employing time-explicitly irregular kernels.
arXiv Detail & Related papers (2023-08-06T21:10:30Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Time Series Clustering With Random Convolutional Kernels [0.0]
Time series data, spanning applications ranging from climatology to finance to healthcare, presents significant challenges in data mining.
One open issue lies in time series clustering, which is crucial for processing large volumes of unlabeled time series data.
We introduce R-Clustering, a novel method that utilizes convolutional architectures with randomly selected parameters.
arXiv Detail & Related papers (2023-05-17T06:25:22Z) - Deep Temporal Contrastive Clustering [21.660509622172274]
This paper presents a deep temporal contrastive clustering approach.
It incorporates the contrastive learning paradigm into the deep time series clustering research.
Experiments on a variety of time series datasets demonstrate the superiority of our approach over the state-of-the-art.
arXiv Detail & Related papers (2022-12-29T16:43:34Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Hierarchical Clustering using Auto-encoded Compact Representation for
Time-series Analysis [8.660029077292346]
We propose a novel mechanism to identify the clusters combining learned compact representation of time-series, Auto Encoded Compact Sequence (AECS) and hierarchical clustering approach.
Our algorithm exploits Recurrent Neural Network (RNN) based under complete Sequence to Sequence(seq2seq) autoencoder and agglomerative hierarchical clustering.
arXiv Detail & Related papers (2021-01-11T08:03:57Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - Autoencoder-based time series clustering with energy applications [0.0]
Time series clustering is a challenging task due to the specific nature of the data.
In this paper we investigate the combination of a convolutional autoencoder and a k-medoids algorithm to perfom time series clustering.
arXiv Detail & Related papers (2020-02-10T10:04:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.