Discourse over Discourse: The Need for an Expanded Pragmatic Focus in
Conversational AI
- URL: http://arxiv.org/abs/2304.14543v1
- Date: Thu, 27 Apr 2023 21:51:42 GMT
- Title: Discourse over Discourse: The Need for an Expanded Pragmatic Focus in
Conversational AI
- Authors: S.M. Seals and Valerie L. Shalin
- Abstract summary: We discuss several challenges in both summarization of conversations and other conversational AI applications.
We illustrate the importance of pragmatics with so-called star sentences.
Because the baseline for quality of AI is indistinguishability from human behavior, we label our complaints as "Turing Test Triggers"
- Score: 0.5884031187931463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The summarization of conversation, that is, discourse over discourse,
elevates pragmatic considerations as a pervasive limitation of both
summarization and other applications of contemporary conversational AI.
Building on impressive progress in both semantics and syntax, pragmatics
concerns meaning in the practical sense. In this paper, we discuss several
challenges in both summarization of conversations and other conversational AI
applications, drawing on relevant theoretical work. We illustrate the
importance of pragmatics with so-called star sentences, syntactically
acceptable propositions that are pragmatically inappropriate in conversation or
its summary. Because the baseline for quality of AI is indistinguishability
from human behavior, we draw heavily on the psycho-linguistics literature, and
label our complaints as "Turing Test Triggers" (TTTs). We discuss implications
for the design and evaluation of conversation summarization methods and
conversational AI applications like voice assistants and chatbots
Related papers
- Expanding the Set of Pragmatic Considerations in Conversational AI [0.26206189324400636]
We discuss several pragmatic limitations of current conversational AI systems.
We label our complaints as "Turing Test Triggers" (TTTs)
We develop a taxonomy of pragmatic considerations intended to identify what pragmatic competencies a conversational AI system requires.
arXiv Detail & Related papers (2023-10-27T19:21:50Z) - The Language Labyrinth: Constructive Critique on the Terminology Used in
the AI Discourse [0.0]
This paper claims, that AI debates are still characterised by a lack of critical distance to metaphors like 'training', 'learning' or 'deciding'
As consequence, reflections regarding responsibility or potential use-cases are greatly distorted.
It is a conceptual work at the intersection of critical computer science and philosophy of language.
arXiv Detail & Related papers (2023-07-18T14:32:21Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
arXiv Detail & Related papers (2023-06-15T10:41:23Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
We propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics.
We develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context.
Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
arXiv Detail & Related papers (2023-06-06T19:17:47Z) - Commonsense Reasoning for Conversational AI: A Survey of the State of
the Art [0.76146285961466]
The paper lists relevant training datasets and describes the primary approaches to include commonsense in conversational AI.
The paper presents preliminary observations of the limited commonsense capabilities of two state-of-the-art open dialogue models, BlenderBot3 and LaMDA.
arXiv Detail & Related papers (2023-02-15T19:55:57Z) - Question-Interlocutor Scope Realized Graph Modeling over Key Utterances
for Dialogue Reading Comprehension [61.55950233402972]
We propose a new key utterances extracting method for dialogue reading comprehension.
It performs prediction on the unit formed by several contiguous utterances, which can realize more answer-contained utterances.
As a graph constructed on the text of utterances, we then propose Question-Interlocutor Scope Realized Graph (QuISG) modeling.
arXiv Detail & Related papers (2022-10-26T04:00:42Z) - CDConv: A Benchmark for Contradiction Detection in Chinese Conversations [74.78715797366395]
We propose a benchmark for Contradiction Detection in Chinese Conversations, namely CDConv.
It contains 12K multi-turn conversations annotated with three typical contradiction categories: Intra-sentence Contradiction, Role Confusion, and History Contradiction.
arXiv Detail & Related papers (2022-10-16T11:37:09Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
We identify the responding relations in the conversation discourse, which link response utterances to their initiations.
We propose a model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links.
Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.
arXiv Detail & Related papers (2021-04-17T17:46:00Z) - Discourse Parsing of Contentious, Non-Convergent Online Discussions [0.16311150636417257]
Inspired by the Bakhtinian theory of Dialogism, we propose a novel theoretical and computational framework.
We develop a novel discourse annotation schema which reflects a hierarchy of discursive strategies.
We share the first labeled dataset of contentious non-convergent online discussions.
arXiv Detail & Related papers (2020-12-08T17:36:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.