DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning
- URL: http://arxiv.org/abs/2306.09030v2
- Date: Mon, 19 Jun 2023 07:31:55 GMT
- Title: DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning
- Authors: Hengli Li, Song-Chun Zhu, Zilong Zheng
- Abstract summary: Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
- Score: 89.92601337474954
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pragmatic reasoning plays a pivotal role in deciphering implicit meanings
that frequently arise in real-life conversations and is essential for the
development of communicative social agents. In this paper, we introduce a novel
challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic
reasoning and situated conversational understanding. Compared with previous
works that treat different figurative expressions (e.g. metaphor, sarcasm) as
individual tasks, DiPlomat provides a cohesive framework towards general
pragmatic understanding. Our dataset is created through the utilization of
Amazon Mechanical Turk ( AMT ), resulting in a total of 4, 177 multi-turn
dialogues. In conjunction with the dataset, we propose two tasks, Pragmatic
Identification and Reasoning (PIR) and Conversational Question Answering (CQA).
Experimental results with state-of-the-art (SOTA) neural architectures reveal
several significant findings: 1) large language models ( LLMs) exhibit poor
performance in tackling this subjective domain; 2) comprehensive comprehension
of context emerges as a critical factor for establishing benign human-machine
interactions; 3) current models defect in the application of pragmatic
reasoning. As a result, we call on more attention to improve the ability of
context understanding, reasoning, and implied meaning modeling.
Related papers
- Reasoning in Conversation: Solving Subjective Tasks through Dialogue
Simulation for Large Language Models [56.93074140619464]
We propose RiC (Reasoning in Conversation), a method that focuses on solving subjective tasks through dialogue simulation.
The motivation of RiC is to mine useful contextual information by simulating dialogues instead of supplying chain-of-thought style rationales.
We evaluate both API-based and open-source LLMs including GPT-4, ChatGPT, and OpenChat across twelve tasks.
arXiv Detail & Related papers (2024-02-27T05:37:10Z) - Interpretation modeling: Social grounding of sentences by reasoning over
their implicit moral judgments [24.133419857271505]
Single gold-standard interpretations rarely exist, challenging conventional assumptions in natural language processing.
This work introduces the interpretation modeling (IM) task which involves modeling several interpretations of a sentence's underlying semantics.
A first-of-its-kind IM dataset is curated to support experiments and analyses.
arXiv Detail & Related papers (2023-11-27T07:50:55Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDial is a novel conversational framework that can generate situated free-form responses with theory-of-mind modeling.
We introduce an explicit mind module that can track the speaker's belief and the speaker's prediction of the listener's belief.
Our framework is applied to both prompting and fine-tuning-based models, and is evaluated across scenarios involving both common ground alignment and negotiation.
arXiv Detail & Related papers (2023-06-27T07:24:32Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Discourse over Discourse: The Need for an Expanded Pragmatic Focus in
Conversational AI [0.5884031187931463]
We discuss several challenges in both summarization of conversations and other conversational AI applications.
We illustrate the importance of pragmatics with so-called star sentences.
Because the baseline for quality of AI is indistinguishability from human behavior, we label our complaints as "Turing Test Triggers"
arXiv Detail & Related papers (2023-04-27T21:51:42Z) - PK-ICR: Persona-Knowledge Interactive Context Retrieval for Grounded Dialogue [21.266410719325208]
Persona and Knowledge Dual Context Identification is a task to identify persona and knowledge jointly for a given dialogue.
We develop a novel grounding retrieval method that utilizes all contexts of dialogue simultaneously.
arXiv Detail & Related papers (2023-02-13T20:27:26Z) - Dialogue Meaning Representation for Task-Oriented Dialogue Systems [51.91615150842267]
We propose Dialogue Meaning Representation (DMR), a flexible and easily extendable representation for task-oriented dialogue.
Our representation contains a set of nodes and edges with inheritance hierarchy to represent rich semantics for compositional semantics and task-specific concepts.
We propose two evaluation tasks to evaluate different machine learning based dialogue models, and further propose a novel coreference resolution model GNNCoref for the graph-based coreference resolution task.
arXiv Detail & Related papers (2022-04-23T04:17:55Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
We propose a Self-supervised Bidirectional Representation Learning of Commonsense framework, which is compatible with off-the-shelf QA model architectures.
The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense.
elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help.
arXiv Detail & Related papers (2022-03-17T16:23:45Z) - Multi-turn Dialogue Reading Comprehension with Pivot Turns and Knowledge [43.352833140317486]
Multi-turn dialogue reading comprehension aims to teach machines to read dialogue contexts and solve tasks such as response selection and answering questions.
This work makes the first attempt to tackle the above two challenges by extracting substantially important turns as pivot utterances.
We propose a pivot-oriented deep selection model (PoDS) on top of the Transformer-based language models for dialogue comprehension.
arXiv Detail & Related papers (2021-02-10T15:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.