Recognizable Information Bottleneck
- URL: http://arxiv.org/abs/2304.14618v1
- Date: Fri, 28 Apr 2023 03:55:33 GMT
- Title: Recognizable Information Bottleneck
- Authors: Yilin Lyu, Xin Liu, Mingyang Song, Xinyue Wang, Yaxin Peng, Tieyong
Zeng, Liping Jing
- Abstract summary: Information Bottlenecks (IBs) learn representations that generalize to unseen data by information compression.
IBs are practically unable to guarantee generalization in real-world scenarios due to the vacuous generalization bound.
We propose a Recognizable Information Bottleneck (RIB) which regularizes the recognizability of representations through a recognizability critic.
- Score: 31.993478081354958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information Bottlenecks (IBs) learn representations that generalize to unseen
data by information compression. However, existing IBs are practically unable
to guarantee generalization in real-world scenarios due to the vacuous
generalization bound. The recent PAC-Bayes IB uses information complexity
instead of information compression to establish a connection with the mutual
information generalization bound. However, it requires the computation of
expensive second-order curvature, which hinders its practical application. In
this paper, we establish the connection between the recognizability of
representations and the recent functional conditional mutual information
(f-CMI) generalization bound, which is significantly easier to estimate. On
this basis we propose a Recognizable Information Bottleneck (RIB) which
regularizes the recognizability of representations through a recognizability
critic optimized by density ratio matching under the Bregman divergence.
Extensive experiments on several commonly used datasets demonstrate the
effectiveness of the proposed method in regularizing the model and estimating
the generalization gap.
Related papers
- Slicing Mutual Information Generalization Bounds for Neural Networks [14.48773730230054]
We introduce new, tighter information-theoretic generalization bounds tailored for deep learning algorithms.
Our bounds offer significant computational and statistical advantages over standard MI bounds.
We extend our analysis to algorithms whose parameters do not need to exactly lie on random subspaces.
arXiv Detail & Related papers (2024-06-06T13:15:37Z) - FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation [58.149902193341816]
We propose textittextbfFourier Neural Processes (FNP) for textitarbitrary-resolution data assimilation in this paper.
Our FNP trained on a fixed resolution can directly handle the assimilation of observations with out-of-distribution resolutions and the observational information reconstruction task without additional fine-tuning.
arXiv Detail & Related papers (2024-06-03T12:24:24Z) - Elastic Information Bottleneck [34.90040361806197]
Information bottleneck is an information-theoretic principle of representation learning.
We propose an elastic information bottleneck (EIB) to interpolate between the IB and DIB regularizers.
simulations and real data experiments show that EIB has the ability to achieve better domain adaptation results than IB and DIB.
arXiv Detail & Related papers (2023-11-07T12:53:55Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Information Theoretic Lower Bounds for Information Theoretic Upper
Bounds [14.268363583731848]
We examine the relationship between the output model and the empirical generalization and the algorithm in the context of convex optimization.
Our study reveals that, for true risk minimization, mutual information is necessary.
Existing information-theoretic generalization bounds fall short in capturing the capabilities of algorithms like SGD and regularized, which have-independent dimension sample complexity.
arXiv Detail & Related papers (2023-02-09T20:42:36Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
We derive information theoretic generalization bounds for supervised learning algorithms based on a new measure of leave-one-out conditional mutual information (loo-CMI)
Contrary to other CMI bounds, our loo-CMI bounds can be computed easily and can be interpreted in connection to other notions such as classical leave-one-out cross-validation.
We empirically validate the quality of the bound by evaluating its predicted generalization gap in scenarios for deep learning.
arXiv Detail & Related papers (2022-07-01T17:58:29Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Learning Unbiased Representations via Mutual Information Backpropagation [36.383338079229695]
In particular, we face the case where some attributes (bias) of the data, if learned by the model, can severely compromise its generalization properties.
We propose a novel end-to-end optimization strategy, which simultaneously estimates and minimizes the mutual information between the learned representation and the data attributes.
arXiv Detail & Related papers (2020-03-13T18:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.