Slicing Mutual Information Generalization Bounds for Neural Networks
- URL: http://arxiv.org/abs/2406.04047v1
- Date: Thu, 6 Jun 2024 13:15:37 GMT
- Title: Slicing Mutual Information Generalization Bounds for Neural Networks
- Authors: Kimia Nadjahi, Kristjan Greenewald, Rickard BrĂ¼el Gabrielsson, Justin Solomon,
- Abstract summary: We introduce new, tighter information-theoretic generalization bounds tailored for deep learning algorithms.
Our bounds offer significant computational and statistical advantages over standard MI bounds.
We extend our analysis to algorithms whose parameters do not need to exactly lie on random subspaces.
- Score: 14.48773730230054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of machine learning (ML) algorithms to generalize well to unseen data has been studied through the lens of information theory, by bounding the generalization error with the input-output mutual information (MI), i.e., the MI between the training data and the learned hypothesis. Yet, these bounds have limited practicality for modern ML applications (e.g., deep learning), due to the difficulty of evaluating MI in high dimensions. Motivated by recent findings on the compressibility of neural networks, we consider algorithms that operate by slicing the parameter space, i.e., trained on random lower-dimensional subspaces. We introduce new, tighter information-theoretic generalization bounds tailored for such algorithms, demonstrating that slicing improves generalization. Our bounds offer significant computational and statistical advantages over standard MI bounds, as they rely on scalable alternative measures of dependence, i.e., disintegrated mutual information and $k$-sliced mutual information. Then, we extend our analysis to algorithms whose parameters do not need to exactly lie on random subspaces, by leveraging rate-distortion theory. This strategy yields generalization bounds that incorporate a distortion term measuring model compressibility under slicing, thereby tightening existing bounds without compromising performance or requiring model compression. Building on this, we propose a regularization scheme enabling practitioners to control generalization through compressibility. Finally, we empirically validate our results and achieve the computation of non-vacuous information-theoretic generalization bounds for neural networks, a task that was previously out of reach.
Related papers
- An Information-Theoretic Approach to Generalization Theory [27.87324770020133]
We analyze information-theoretic bounds that quantify the dependence between a learning algorithm and the training data.
We show that algorithms with a bounded maximal leakage guarantee generalization even with a constant privacy parameter.
arXiv Detail & Related papers (2024-08-20T10:08:21Z) - Information Theoretic Lower Bounds for Information Theoretic Upper
Bounds [14.268363583731848]
We examine the relationship between the output model and the empirical generalization and the algorithm in the context of convex optimization.
Our study reveals that, for true risk minimization, mutual information is necessary.
Existing information-theoretic generalization bounds fall short in capturing the capabilities of algorithms like SGD and regularized, which have-independent dimension sample complexity.
arXiv Detail & Related papers (2023-02-09T20:42:36Z) - Generalization Bounds with Data-dependent Fractal Dimensions [5.833272638548154]
We prove fractal geometry-based generalization bounds without requiring any Lipschitz assumption.
Despite introducing a significant amount of technical complications, this new notion lets us control the generalization error.
arXiv Detail & Related papers (2023-02-06T13:24:48Z) - PAC-Bayes Compression Bounds So Tight That They Can Explain
Generalization [48.26492774959634]
We develop a compression approach based on quantizing neural network parameters in a linear subspace.
We find large models can be compressed to a much greater extent than previously known, encapsulating Occam's razor.
arXiv Detail & Related papers (2022-11-24T13:50:16Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
We derive information theoretic generalization bounds for supervised learning algorithms based on a new measure of leave-one-out conditional mutual information (loo-CMI)
Contrary to other CMI bounds, our loo-CMI bounds can be computed easily and can be interpreted in connection to other notions such as classical leave-one-out cross-validation.
We empirically validate the quality of the bound by evaluating its predicted generalization gap in scenarios for deep learning.
arXiv Detail & Related papers (2022-07-01T17:58:29Z) - Intrinsic Dimension, Persistent Homology and Generalization in Neural
Networks [19.99615698375829]
We show that generalization error can be equivalently bounded in terms of a notion called the 'persistent homology dimension' (PHD)
We develop an efficient algorithm to estimate PHD in the scale of modern deep neural networks.
Our experiments show that the proposed approach can efficiently compute a network's intrinsic dimension in a variety of settings.
arXiv Detail & Related papers (2021-11-25T17:06:15Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Dimension Free Generalization Bounds for Non Linear Metric Learning [61.193693608166114]
We provide uniform generalization bounds for two regimes -- the sparse regime, and a non-sparse regime.
We show that by relying on a different, new property of the solutions, it is still possible to provide dimension free generalization guarantees.
arXiv Detail & Related papers (2021-02-07T14:47:00Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.