X-RLflow: Graph Reinforcement Learning for Neural Network Subgraphs
Transformation
- URL: http://arxiv.org/abs/2304.14698v1
- Date: Fri, 28 Apr 2023 09:06:18 GMT
- Title: X-RLflow: Graph Reinforcement Learning for Neural Network Subgraphs
Transformation
- Authors: Guoliang He, Sean Parker, Eiko Yoneki
- Abstract summary: graph superoptimisation systems perform a sequence of subgraph substitution to neural networks to find the optimal computation graph structure.
We show that our approach can outperform state-of-the-art superoptimisation systems over a range of deep learning models and achieve by up to 40% on those that are based on transformer-style architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor graph superoptimisation systems perform a sequence of subgraph
substitution to neural networks, to find the optimal computation graph
structure. Such a graph transformation process naturally falls into the
framework of sequential decision-making, and existing systems typically employ
a greedy search approach, which cannot explore the whole search space as it
cannot tolerate a temporary loss of performance. In this paper, we address the
tensor graph superoptimisation problem by exploring an alternative search
approach, reinforcement learning (RL). Our proposed approach, X-RLflow, can
learn to perform neural network dataflow graph rewriting, which substitutes a
subgraph one at a time. X-RLflow is based on a model-free RL agent that uses a
graph neural network (GNN) to encode the target computation graph and outputs a
transformed computation graph iteratively. We show that our approach can
outperform state-of-the-art superoptimisation systems over a range of deep
learning models and achieve by up to 40% on those that are based on
transformer-style architectures.
Related papers
- Faster Inference Time for GNNs using coarsening [1.323700980948722]
coarsening-based methods are used to reduce the graph into a smaller one, resulting in faster computation.
No previous research has tackled the cost during the inference.
This paper presents a novel approach to improve the scalability of GNNs through subgraph-based techniques.
arXiv Detail & Related papers (2024-10-19T06:27:24Z) - Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study [13.354505458409957]
Graph neural networks (GNNs) are capable of learning on graph-structured data.
The sparsity of graphs results in suboptimal memory access patterns and longer training time.
We show that graph reordering is effective in reducing training time for CPU- and GPU-based training.
arXiv Detail & Related papers (2024-09-17T12:28:02Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Layer-wise training for self-supervised learning on graphs [0.0]
End-to-end training of graph neural networks (GNN) on large graphs presents several memory and computational challenges.
We propose Layer-wise Regularized Graph Infomax, an algorithm to train GNNs layer by layer in a self-supervised manner.
arXiv Detail & Related papers (2023-09-04T10:23:39Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
Scalability of graph neural networks (GNNs) is one of the major challenges in machine learning.
In this paper, we propose to use graph coarsening for scalable training of GNNs.
We show that, simply applying off-the-shelf coarsening methods, we can reduce the number of nodes by up to a factor of ten without causing a noticeable downgrade in classification accuracy.
arXiv Detail & Related papers (2021-06-09T15:46:17Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design.
We employ interpretable analytical low-pass graph filters and employ 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN.
arXiv Detail & Related papers (2020-10-21T20:04:22Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.