A Direct Sampling-Based Deep Learning Approach for Inverse Medium
Scattering Problems
- URL: http://arxiv.org/abs/2305.00250v1
- Date: Sat, 29 Apr 2023 12:29:30 GMT
- Title: A Direct Sampling-Based Deep Learning Approach for Inverse Medium
Scattering Problems
- Authors: Jianfeng Ning, Fuqun Han and Jun Zou
- Abstract summary: We propose a novel direct sampling-based deep learning approach (DSM-DL) for reconstructing inhomogeneous scatterers.
Our proposed DSM-DL is computationally efficient, robust to noise, easy to implement, and able to naturally incorporate multiple measured data.
- Score: 3.776050336003086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we focus on the inverse medium scattering problem (IMSP), which
aims to recover unknown scatterers based on measured scattered data. Motivated
by the efficient direct sampling method (DSM) introduced in [23], we propose a
novel direct sampling-based deep learning approach (DSM-DL)for reconstructing
inhomogeneous scatterers. In particular, we use the U-Net neural network to
learn the relation between the index functions and the true contrasts. Our
proposed DSM-DL is computationally efficient, robust to noise, easy to
implement, and able to naturally incorporate multiple measured data to achieve
high-quality reconstructions. Some representative tests are carried out with
varying numbers of incident waves and different noise levels to evaluate the
performance of the proposed method. The results demonstrate the promising
benefits of combining deep learning techniques with the DSM for IMSP.
Related papers
- Diffusion-PINN Sampler [6.656265182236135]
We introduce a novel diffusion-based sampling algorithm that estimates the drift term by solving the governing partial differential equation of the log-density of the underlying SDE marginals via physics-informed neural networks (PINN)
We prove that the error of log-density approximation can be controlled by the PINN residual loss, enabling us to establish convergence guarantees of DPS.
arXiv Detail & Related papers (2024-10-20T09:02:16Z) - Reliable Deep Diffusion Tensor Estimation: Rethinking the Power of Data-Driven Optimization Routine [17.516054970588137]
This work introduces a data-driven optimization-based method termed DoDTI.
The proposed method attains state-of-the-art performance in DTI parameter estimation.
Notably, it demonstrates superior generalization, accuracy, and efficiency, rendering it highly reliable for widespread application in the field.
arXiv Detail & Related papers (2024-09-04T07:35:12Z) - Heterogeneous Learning Rate Scheduling for Neural Architecture Search on Long-Tailed Datasets [0.0]
We propose a novel adaptive learning rate scheduling strategy tailored for the architecture parameters of DARTS.
Our approach dynamically adjusts the learning rate of the architecture parameters based on the training epoch, preventing the disruption of well-trained representations.
arXiv Detail & Related papers (2024-06-11T07:32:25Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
offline reinforcement learning algorithms have proven effective on datasets highly connected to the target downstream task.
We show that existing methods struggle with diverse data: their performance considerably deteriorates as data collected for related but different tasks is simply added to the offline buffer.
We show that scale, more than algorithmic considerations, is the key factor influencing performance.
arXiv Detail & Related papers (2024-03-19T18:57:53Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
We propose a new method for separating superimposed sources using diffusion-based generative models.
Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature.
Our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme.
arXiv Detail & Related papers (2023-06-26T04:12:40Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
Low-rank Multi-view Subspace Learning has shown great potential in cross-view classification in recent years.
Existing LMvSL based methods are incapable of well handling view discrepancy and discriminancy simultaneously.
We propose Structured Low-rank Matrix Recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy.
arXiv Detail & Related papers (2020-03-22T03:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.