Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth
- URL: http://arxiv.org/abs/2010.15376v1
- Date: Thu, 29 Oct 2020 06:32:53 GMT
- Title: Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth
- Authors: Wei Chen, Bowen Zhang, Shi Jin, Bo Ai, Zhangdui Zhong
- Abstract summary: We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
- Score: 51.40441097625201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse signal recovery problems from noisy linear measurements appear in many
areas of wireless communications. In recent years, deep learning (DL) based
approaches have attracted interests of researchers to solve the sparse linear
inverse problem by unfolding iterative algorithms as neural networks.
Typically, research concerning DL assume a fixed number of network layers.
However, it ignores a key character in traditional iterative algorithms, where
the number of iterations required for convergence changes with varying sparsity
levels. By investigating on the projected gradient descent, we unveil the
drawbacks of the existing DL methods with fixed depth. Then we propose an
end-to-end trainable DL architecture, which involves an extra halting score at
each layer. Therefore, the proposed method learns how many layers to execute to
emit an output, and the network depth is dynamically adjusted for each task in
the inference phase. We conduct experiments using both synthetic data and
applications including random access in massive MTC and massive MIMO channel
estimation, and the results demonstrate the improved efficiency for the
proposed approach.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.
We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.
We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - A Direct Sampling-Based Deep Learning Approach for Inverse Medium
Scattering Problems [3.776050336003086]
We propose a novel direct sampling-based deep learning approach (DSM-DL) for reconstructing inhomogeneous scatterers.
Our proposed DSM-DL is computationally efficient, robust to noise, easy to implement, and able to naturally incorporate multiple measured data.
arXiv Detail & Related papers (2023-04-29T12:29:30Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Deep Transform and Metric Learning Networks [30.753361147185995]
We propose a novel Deep DL approach where each DL layer can be formulated and solved as a combination of one linear layer and a Recurrent Neural Network.
Our proposed work unveils new insights between the Neural Networks and Deep DL, and provides a novel, efficient and competitive approach to jointly learn the deep transforms and metrics.
arXiv Detail & Related papers (2021-04-21T03:10:15Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
We propose a novel semantic data augmentation algorithm to complement traditional approaches.
The proposed method is inspired by the intriguing property that deep networks are effective in learning linearized features.
We show that the proposed implicit semantic data augmentation (ISDA) algorithm amounts to minimizing a novel robust CE loss.
arXiv Detail & Related papers (2020-07-21T00:32:44Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z) - Semi-Implicit Back Propagation [1.5533842336139065]
We propose a semi-implicit back propagation method for neural network training.
The difference on the neurons are propagated in a backward fashion and the parameters are updated with proximal mapping.
Experiments on both MNIST and CIFAR-10 demonstrate that the proposed algorithm leads to better performance in terms of both loss decreasing and training/validation accuracy.
arXiv Detail & Related papers (2020-02-10T03:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.