Quantum Internet: The Future of Internetworking
- URL: http://arxiv.org/abs/2305.00598v1
- Date: Sun, 30 Apr 2023 23:17:47 GMT
- Title: Quantum Internet: The Future of Internetworking
- Authors: Antonio Abelem, Don Towsley, Gayane Vardoyan
- Abstract summary: The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet.
This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking.
- Score: 16.313110394211154
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum information, computation and communication, will have a great impact
on our world. One important subfield will be quantum networking and the quantum
Internet. The purpose of a quantum Internet is to enable applications that are
fundamentally out of reach for the classical Internet. Quantum networks enable
new capabilities to communication systems. This allows the parties to generate
long distance quantum entanglement, which serves a number of tasks including
the generation of multiparty shared secrets whose security relies only on the
laws of physics, distributed quantum computing, improved sensing, quantum
computing on encrypted data, and secure private-bid auctions. However, quantum
signals are fragile, and, in general, cannot be copied or amplified. In order
to enable widespread use and application development, it is essential to
develop methods that allow quantum protocols to connect to the underlying
hardware implementation transparently and to make fast and reactive decisions
for generating entanglement in the network to mitigate limited qubit lifetimes.
Architectures for large-scale quantum internetworking are in development,
paralleling theoretical and experimental work on physical layers and low-level
error management and connection technologies. This chapter aims to present the
main concepts, challenges, and opportunities for research in quantum
information, quantum computing and quantum networking.
Related papers
- Harnessing Quantum Entanglement: Comprehensive Strategies for Enhanced Communication and Beyond in Quantum Networks [1.2277343096128712]
Entanglement, a key quantum phenomenon, enables advanced protocols with enhanced security and processing power.
Quantum Internet, Quantum Error-Correcting codes, and quantum cryptographys role in ensuring secure communication.
arXiv Detail & Related papers (2024-06-13T05:54:34Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum repeaters: From quantum networks to the quantum internet [2.053047357590719]
We review the conceptual frameworks and architectures for quantum repeaters.
We discuss the various near-term proposals to overcome the limits to the communication rates set by point-to-point quantum communication.
arXiv Detail & Related papers (2022-12-21T07:21:50Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum Internet- Applications, Functionalities, Enabling Technologies,
Challenges, and Research Directions [4.44483539967295]
Today's internet technology is a playground for eavesdroppers.
This has motivated the researchers to switch to new technologies that are fundamentally more secure.
The realization of quantum internet requires quantum communication between various remote nodes.
arXiv Detail & Related papers (2021-01-12T11:57:04Z) - Designing a Quantum Network Protocol [0.0]
We present a quantum network protocol designed to enable end-to-end quantum communication.
One of the key challenges in near-term quantum technology is decoherence -- the gradual decay of quantum information.
We show that the protocol is able to deliver its service even in the face of significant losses due to decoherence.
arXiv Detail & Related papers (2020-10-06T09:41:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.