Towards Unbiased Training in Federated Open-world Semi-supervised
Learning
- URL: http://arxiv.org/abs/2305.00771v1
- Date: Mon, 1 May 2023 11:12:37 GMT
- Title: Towards Unbiased Training in Federated Open-world Semi-supervised
Learning
- Authors: Jie Zhang, Xiaosong Ma, Song Guo, Wenchao Xu
- Abstract summary: We propose a novel Federatedopen-world Semi-Supervised Learning (FedoSSL) framework, which can solve the key challenge in distributed and open-world settings.
We adopt an uncertainty-aware suppressed loss to alleviate the biased training between locally unseen and globally unseen classes.
The proposed FedoSSL can be easily adapted to state-of-the-art FL methods, which is also validated via extensive experiments on benchmarks and real-world datasets.
- Score: 15.08153616709326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Semi-supervised Learning (FedSSL) has emerged as a new paradigm for
allowing distributed clients to collaboratively train a machine learning model
over scarce labeled data and abundant unlabeled data. However, existing works
for FedSSL rely on a closed-world assumption that all local training data and
global testing data are from seen classes observed in the labeled dataset. It
is crucial to go one step further: adapting FL models to an open-world setting,
where unseen classes exist in the unlabeled data. In this paper, we propose a
novel Federatedopen-world Semi-Supervised Learning (FedoSSL) framework, which
can solve the key challenge in distributed and open-world settings, i.e., the
biased training process for heterogeneously distributed unseen classes.
Specifically, since the advent of a certain unseen class depends on a client
basis, the locally unseen classes (exist in multiple clients) are likely to
receive differentiated superior aggregation effects than the globally unseen
classes (exist only in one client). We adopt an uncertainty-aware suppressed
loss to alleviate the biased training between locally unseen and globally
unseen classes. Besides, we enable a calibration module supplementary to the
global aggregation to avoid potential conflicting knowledge transfer caused by
inconsistent data distribution among different clients. The proposed FedoSSL
can be easily adapted to state-of-the-art FL methods, which is also validated
via extensive experiments on benchmarks and real-world datasets (CIFAR-10,
CIFAR-100 and CINIC-10).
Related papers
- Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - FedCME: Client Matching and Classifier Exchanging to Handle Data
Heterogeneity in Federated Learning [5.21877373352943]
Data heterogeneity across clients is one of the key challenges in Federated Learning (FL)
We propose a novel FL framework named FedCME by client matching and classifier exchanging.
Experimental results demonstrate that FedCME performs better than FedAvg, FedProx, MOON and FedRS on popular federated learning benchmarks.
arXiv Detail & Related papers (2023-07-17T15:40:45Z) - FedABC: Targeting Fair Competition in Personalized Federated Learning [76.9646903596757]
Federated learning aims to collaboratively train models without accessing their client's local private data.
We propose a novel and generic PFL framework termed Federated Averaging via Binary Classification, dubbed FedABC.
In particular, we adopt the one-vs-all'' training strategy in each client to alleviate the unfair competition between classes.
arXiv Detail & Related papers (2023-02-15T03:42:59Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) is a novel FL algorithm in which clients rely on knowledge distillation to train local models.
Unlike other KD-based pFL methods, FedHKD does not rely on a public dataset nor it deploys a generative model at the server.
We conduct extensive experiments on visual datasets in a variety of scenarios, demonstrating that FedHKD provides significant improvement in both personalized as well as global model performance.
arXiv Detail & Related papers (2023-01-21T16:20:57Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised federated learning (FL) enables multiple clients to share the trained model without sharing their labeled data.
We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients.
arXiv Detail & Related papers (2022-04-07T09:12:00Z) - Semi-Supervised Federated Learning with non-IID Data: Algorithm and
System Design [42.63120623012093]
Federated Learning (FL) allows edge devices (or clients) to keep data locally while simultaneously training a shared global model.
The distribution of the client's local training data is non-independent identically distributed (non-IID)
We present a robust semi-supervised FL system design, where the system aims to solve the problem of data availability and non-IID in FL.
arXiv Detail & Related papers (2021-10-26T03:41:48Z) - Preservation of the Global Knowledge by Not-True Self Knowledge
Distillation in Federated Learning [8.474470736998136]
In Federated Learning (FL), a strong global model is collaboratively learned by aggregating the clients' locally trained models.
We observe that fitting on biased local distribution shifts the feature on global distribution and results in forgetting of global knowledge.
We propose a simple yet effective framework Federated Local Self-Distillation (FedLSD), which utilizes the global knowledge on locally available data.
arXiv Detail & Related papers (2021-06-06T11:51:47Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.