Many-body physics of spontaneously broken higher-rank symmetry: from
fractonic superfluids to dipolar Hubbard model
- URL: http://arxiv.org/abs/2305.00941v3
- Date: Sat, 12 Aug 2023 07:59:06 GMT
- Title: Many-body physics of spontaneously broken higher-rank symmetry: from
fractonic superfluids to dipolar Hubbard model
- Authors: Shuai A. Chen and Peng Ye
- Abstract summary: Fractonic superfluids are exotic phases of matter in which bosons are subject to mobility constraints.
This paper introduces exciting developments on the theory of spontaneous symmetry breaking in such systems.
- Score: 3.7643633034408404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fractonic superfluids are exotic phases of matter in which bosons are subject
to mobility constraints, resulting in features beyond those of conventional
superfluids. These exotic phases arise from the spontaneous breaking of
higher-rank symmetry (HRS) in many-body systems with higher-moment
conservation, such as dipoles, quadrupoles, and angular moments. The aim of
this paper is to introduce exciting developments on the theory of spontaneous
symmetry breaking in such systems, which we refer to as ``many-fracton
systems''. More specifically, we introduce exciting progress on general aspects
of HRS, minimal model construction, realization of symmetry-breaking ground
states, order parameter, off-diagonal long-range order (ODLRO), Noether
currents with continuity equations, Gross-Pitaevskii equations, quantum
fluctuations, Goldstone modes, specific heat, generalized Mermin-Wagner
theorem, critical current, Landau criterion, symmetry defects, and
Kosterlitz-Thouless (KT)-like physics, hydrodynamics, and dipolar Hubbard model
realization. This paper is concluded with several future directions.
Related papers
- Topological crystals and soliton lattices in a Gross-Neveu model with Hilbert-space fragmentation [41.94295877935867]
We explore the finite-density phase diagram of the single-flavour Gross-Neveu-Wilson (GNW) model.<n>We find a sequence of inhomogeneous ground states that arise through a real-space version of the mechanism of Hilbert-space fragmentation.
arXiv Detail & Related papers (2025-06-23T14:19:35Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.
We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological zero modes and edge symmetries of metastable Markovian
bosonic systems [0.0]
We study tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators.
We show the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system.
Our results point to a new paradigm of genuine symmetry-protected topological physics in free bosons.
arXiv Detail & Related papers (2023-06-23T18:00:03Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - The Closed and Open Unbalanced Dicke Trimer Model: Critical Properties
and Nonlinear Semiclassical Dynamics [5.824077816472029]
We study a generalization of the recently introduced Dicke trimer model.
In the extreme unbalanced limit, the symmetry of the Tavis-Cummings model is restored.
We observe the emergence of nonequilibrium phases characterized by trivial and non-trivial dynamical signatures.
arXiv Detail & Related papers (2023-03-21T11:23:18Z) - Entangling dynamics from effective rotor/spin-wave separation in
U(1)-symmetric quantum spin models [0.0]
Non-equilibrium dynamics of quantum spin models is a most challenging topic, due to the exponentiality of Hilbert space.
A particularly important class of evolutions is the one governed by U(1) symmetric Hamiltonians.
We show that the dynamics of the OAT model can be closely reproduced by systems with power-lawdecaying interactions.
arXiv Detail & Related papers (2023-02-18T09:37:45Z) - Chiral metals and entrapped insulators in a one-dimensional topological
non-Hermitian system [4.3012765978447565]
We study many-body'steady states' that arise in the non-Hermitian generalisation of the non-interacting Su-Schrieffer-Heeger model at a finite density of fermions.
arXiv Detail & Related papers (2021-11-03T13:42:18Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Characterizing Topological Excitations of a Long-Range Heisenberg Model
with Trapped Ions [0.0]
We propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power-law decaying interactions.
We show that this model features a quantum phase transition from a liquid to a valence bond solid that spontaneously breaks lattice translational symmetry.
We moreover introduce an interferometric protocol to characterize the topological excitations and the bulk topological invariants of the interacting many-body system.
arXiv Detail & Related papers (2020-12-16T19:00:02Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.