Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator
- URL: http://arxiv.org/abs/2206.07680v1
- Date: Wed, 15 Jun 2022 17:29:57 GMT
- Title: Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator
- Authors: Tailin Wu and Qinchen Wang and Yinan Zhang and Rex Ying and Kaidi Cao
and Rok Sosi\v{c} and Ridwan Jalali and Hassan Hamam and Marko Maucec and
Jure Leskovec
- Abstract summary: We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
- Score: 57.57321628587564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subsurface simulations use computational models to predict the flow of fluids
(e.g., oil, water, gas) through porous media. These simulations are pivotal in
industrial applications such as petroleum production, where fast and accurate
models are needed for high-stake decision making, for example, for well
placement optimization and field development planning. Classical finite
difference numerical simulators require massive computational resources to
model large-scale real-world reservoirs. Alternatively, streamline simulators
and data-driven surrogate models are computationally more efficient by relying
on approximate physics models, however they are insufficient to model complex
reservoir dynamics at scale. Here we introduce Hybrid Graph Network Simulator
(HGNS), which is a data-driven surrogate model for learning reservoir
simulations of 3D subsurface fluid flows. To model complex reservoir dynamics
at both local and global scale, HGNS consists of a subsurface graph neural
network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model
the evolution of pressure. HGNS is able to scale to grids with millions of
cells per time step, two orders of magnitude higher than previous surrogate
models, and can accurately predict the fluid flow for tens of time steps (years
into the future). Using an industry-standard subsurface flow dataset (SPE-10)
with 1.1 million cells, we demonstrate that HGNS is able to reduce the
inference time up to 18 times compared to standard subsurface simulators, and
that it outperforms other learning-based models by reducing long-term
prediction errors by up to 21%.
Related papers
- Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge [0.0]
We propose a hybrid modeling workflow for process-based hydrologic models and machine learning surrogate models.
As a case study, we apply this workflow to simulations of variably saturated groundwater flow at a prospective managed aquifer recharge site.
Our results demonstrate that ML surrogate models can achieve under 10% mean absolute percentage error and yield order-of-magnitude runtime savings.
arXiv Detail & Related papers (2024-07-30T15:24:27Z) - Three-dimensional granular flow simulation using graph neural
network-based learned simulator [2.153852088624324]
We use a graph neural network (GNN) to develop a simulator for granular flows.
The simulator reproduces the overall behaviors of column collapses with various aspect ratios.
The speed of GNS outperforms high-fidelity numerical simulators by 300 times.
arXiv Detail & Related papers (2023-11-13T15:54:09Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
Data-driven surrogate modeling provides inexpensive alternatives to high-fidelity numerical simulators.
CNNs are powerful in approximating partial differential equation solutions, but it remains challenging for CNNs to handle irregular and unstructured simulation meshes.
We construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media.
arXiv Detail & Related papers (2023-07-10T09:59:35Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
arXiv Detail & Related papers (2021-04-30T02:14:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.