論文の概要: A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models
- arxiv url: http://arxiv.org/abs/2305.01181v3
- Date: Tue, 2 Apr 2024 01:56:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 13:51:35.879029
- Title: A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models
- Title(参考訳): パラダイムシフト: 大規模言語モデルによる機械翻訳の在り方
- Authors: Chenyang Lyu, Zefeng Du, Jitao Xu, Yitao Duan, Minghao Wu, Teresa Lynn, Alham Fikri Aji, Derek F. Wong, Siyou Liu, Longyue Wang,
- Abstract要約: 深層ニューラルネットワークの発展により、機械翻訳は長年にわたって大きく進歩してきた。
GPT-4やChatGPTのような大規模言語モデル(LLM)の出現は、MTドメインに新しいフェーズを導入している。
我々は、Long-Document Translation、Stylized Translation、Interactive TranslationなどのシナリオにおけるLLMの利点を強調し、新しいMT方向を強調した。
- 参考スコア(独自算出の注目度): 55.42263732351375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Translation (MT) has greatly advanced over the years due to the developments in deep neural networks. However, the emergence of Large Language Models (LLMs) like GPT-4 and ChatGPT is introducing a new phase in the MT domain. In this context, we believe that the future of MT is intricately tied to the capabilities of LLMs. These models not only offer vast linguistic understandings but also bring innovative methodologies, such as prompt-based techniques, that have the potential to further elevate MT. In this paper, we provide an overview of the significant enhancements in MT that are influenced by LLMs and advocate for their pivotal role in upcoming MT research and implementations. We highlight several new MT directions, emphasizing the benefits of LLMs in scenarios such as Long-Document Translation, Stylized Translation, and Interactive Translation. Additionally, we address the important concern of privacy in LLM-driven MT and suggest essential privacy-preserving strategies. By showcasing practical instances, we aim to demonstrate the advantages that LLMs offer, particularly in tasks like translating extended documents. We conclude by emphasizing the critical role of LLMs in guiding the future evolution of MT and offer a roadmap for future exploration in the sector.
- Abstract(参考訳): 深層ニューラルネットワークの発展により、機械翻訳(MT)は長年にわたって大きく進歩してきた。
しかし、GPT-4やChatGPTのような大規模言語モデル(LLM)の出現は、MTドメインに新しいフェーズを導入している。
この文脈では、MTの将来はLLMの能力と密接に結びついていると信じている。
本稿では,LLM の影響を受け,今後の MT 研究や実装において重要な役割を担っている MT の大幅な拡張について概説する。
我々は、Long-Document Translation、Stylized Translation、Interactive TranslationなどのシナリオにおけるLLMの利点を強調し、新しいMT方向を強調した。
さらに、LLM駆動MTにおけるプライバシーに関する重要な懸念に対処し、重要なプライバシー保護戦略を提案する。
実例を示すことによって,LLMがもたらすメリット,特に拡張ドキュメントの翻訳などのタスクを実証することを目指している。
我々は,MTの今後の発展を導く上でのLLMのクリティカルな役割を強調し,今後の研究開発のロードマップを提供する。
関連論文リスト
- Refining Translations with LLMs: A Constraint-Aware Iterative Prompting Approach [7.5069214839655345]
大言語モデル(LLM)は機械翻訳(MT)において顕著な熟練性を示している
本稿では,意味的正確性に不可欠なキーワードを優先することで,翻訳忠実度を高める多段階のプロンプトチェーンを提案する。
FLORES-200およびWMTデータセットのベースモデルとしてLlamaとQwenを使用した実験は、ベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-11-13T05:40:24Z) - Leveraging LLMs for MT in Crisis Scenarios: a blueprint for low-resource languages [2.648836772989769]
堅牢で適応可能な機械翻訳(MT)システムの必要性は、これまで以上に迫っている。
本研究では,Large Language Models (LLMs) とMultilingual LLMs (MLLMs) を利用して,このようなシナリオにおけるMT機能の向上を図る。
本研究は,LLMの最先端機能と微調整技術とコミュニティ主導型コーパス開発戦略を組み合わせた新しいアプローチを概説する。
論文 参考訳(メタデータ) (2024-10-31T12:52:26Z) - Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
低リソース言語に大規模言語モデルを適用するのに何が必要かについて検討する。
我々は、事前トレーニングとスーパーバイザードファインチューニング(SFT)の間に並列データが重要であることを示す。
2つの低リソース言語群にまたがる3つの LLM 実験により,本研究の一般化可能性を示す一貫した傾向が示された。
論文 参考訳(メタデータ) (2024-08-23T00:59:38Z) - MT-PATCHER: Selective and Extendable Knowledge Distillation from Large Language Models for Machine Translation [61.65537912700187]
機械翻訳(MT)分野における言語モデル(LLM)の強みを実証した。
我々は,LLMから既存のMTモデルに選択的かつ包括的かつ積極的に知識を伝達するMT-Patcherというフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-14T16:07:39Z) - Fine-tuning Large Language Models for Domain-specific Machine
Translation [8.439661191792897]
大規模言語モデル(LLM)は機械翻訳(MT)において大きな進歩を遂げた。
しかし、ドメイン特異的MTのポテンシャルはいまだ未解明のままである。
本稿では,LlamaIT と呼ばれる,ドメイン固有の MT タスクのための汎用 LLM を効果的かつ効率的に微調整する,プロンプト指向の微調整手法を提案する。
論文 参考訳(メタデータ) (2024-02-23T02:24:15Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Improving Machine Translation with Large Language Models: A Preliminary Study with Cooperative Decoding [73.32763904267186]
大きな言語モデル(LLM)は、優れた翻訳品質を達成する可能性を示す。
我々は,NMTシステムを事前翻訳モデルとして扱うCooperative Decoding(CoDec)と,MT指向LLMを補足解として提案する。
論文 参考訳(メタデータ) (2023-11-06T03:41:57Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z) - Prompting PaLM for Translation: Assessing Strategies and Performance [16.73524055296411]
経路言語モデル (PaLM) は, 同様に訓練されたLLMの中で最強の機械翻訳(MT)性能を示した。
我々は、PaLMのMT機能に関する以前の評価を、より最近のテストセット、現代のMTメトリクス、そして人間の評価で再検討し、その性能は、印象的ではあるが、最先端の監視システムよりも遅れていることを発見した。
論文 参考訳(メタデータ) (2022-11-16T18:42:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。