A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models
- URL: http://arxiv.org/abs/2305.01181v3
- Date: Tue, 2 Apr 2024 01:56:56 GMT
- Title: A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models
- Authors: Chenyang Lyu, Zefeng Du, Jitao Xu, Yitao Duan, Minghao Wu, Teresa Lynn, Alham Fikri Aji, Derek F. Wong, Siyou Liu, Longyue Wang,
- Abstract summary: Machine Translation has greatly advanced over the years due to the developments in deep neural networks.
The emergence of Large Language Models (LLMs) like GPT-4 and ChatGPT is introducing a new phase in the MT domain.
We highlight several new MT directions, emphasizing the benefits of LLMs in scenarios such as Long-Document Translation, Stylized Translation, and Interactive Translation.
- Score: 55.42263732351375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Translation (MT) has greatly advanced over the years due to the developments in deep neural networks. However, the emergence of Large Language Models (LLMs) like GPT-4 and ChatGPT is introducing a new phase in the MT domain. In this context, we believe that the future of MT is intricately tied to the capabilities of LLMs. These models not only offer vast linguistic understandings but also bring innovative methodologies, such as prompt-based techniques, that have the potential to further elevate MT. In this paper, we provide an overview of the significant enhancements in MT that are influenced by LLMs and advocate for their pivotal role in upcoming MT research and implementations. We highlight several new MT directions, emphasizing the benefits of LLMs in scenarios such as Long-Document Translation, Stylized Translation, and Interactive Translation. Additionally, we address the important concern of privacy in LLM-driven MT and suggest essential privacy-preserving strategies. By showcasing practical instances, we aim to demonstrate the advantages that LLMs offer, particularly in tasks like translating extended documents. We conclude by emphasizing the critical role of LLMs in guiding the future evolution of MT and offer a roadmap for future exploration in the sector.
Related papers
- Refining Translations with LLMs: A Constraint-Aware Iterative Prompting Approach [7.5069214839655345]
Large language models (LLMs) have demonstrated remarkable proficiency in machine translation (MT)
We propose a multi-step prompt chain that enhances translation faithfulness by prioritizing key terms crucial for semantic accuracy.
Experiments using Llama and Qwen as base models on the FLORES-200 and WMT datasets demonstrate significant improvements over baselines.
arXiv Detail & Related papers (2024-11-13T05:40:24Z) - Leveraging LLMs for MT in Crisis Scenarios: a blueprint for low-resource languages [2.648836772989769]
The need for robust and adaptable Machine Translation (MT) systems is more pressing than ever.
This study presents a comprehensive exploration of leveraging Large Language Models (LLMs) and Multilingual LLMs (MLLMs) to enhance MT capabilities in such scenarios.
This research outlines a novel approach that combines the cutting-edge capabilities of LLMs with fine-tuning techniques and community-driven corpus development strategies.
arXiv Detail & Related papers (2024-10-31T12:52:26Z) - Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
We explore what it would take to adapt Large Language Models for low-resource languages.
We show that parallel data is critical during both pre-training andSupervised Fine-Tuning (SFT)
Our experiments with three LLMs across two low-resourced language groups reveal consistent trends, underscoring the generalizability of our findings.
arXiv Detail & Related papers (2024-08-23T00:59:38Z) - MT-PATCHER: Selective and Extendable Knowledge Distillation from Large Language Models for Machine Translation [61.65537912700187]
Large Language Models (LLM) have demonstrated their strong ability in the field of machine translation (MT)
We propose a framework called MT-Patcher, which transfers knowledge from LLMs to existing MT models in a selective, comprehensive and proactive manner.
arXiv Detail & Related papers (2024-03-14T16:07:39Z) - Fine-tuning Large Language Models for Domain-specific Machine
Translation [8.439661191792897]
Large language models (LLMs) have made significant progress in machine translation (MT)
However, their potential in domain-specific MT remains under-explored.
This paper proposes a prompt-oriented fine-tuning method, denoted as LlamaIT, to effectively and efficiently fine-tune a general-purpose LLM for domain-specific MT tasks.
arXiv Detail & Related papers (2024-02-23T02:24:15Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Improving Machine Translation with Large Language Models: A Preliminary Study with Cooperative Decoding [73.32763904267186]
Large Language Models (LLMs) present the potential for achieving superior translation quality.
We propose Cooperative Decoding (CoDec) which treats NMT systems as a pretranslation model and MT-oriented LLMs as a supplemental solution.
arXiv Detail & Related papers (2023-11-06T03:41:57Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
Large language models (LLMs) can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks.
This paper provides an in-depth evaluation of LLMs' ability on discourse modeling.
arXiv Detail & Related papers (2023-04-05T03:49:06Z) - Prompting PaLM for Translation: Assessing Strategies and Performance [16.73524055296411]
pathways language model (PaLM) has demonstrated the strongest machine translation (MT) performance among similarly-trained LLMs to date.
We revisit previous assessments of PaLM's MT capabilities with more recent test sets, modern MT metrics, and human evaluation, and find that its performance, while impressive, still lags that of state-of-the-art supervised systems.
arXiv Detail & Related papers (2022-11-16T18:42:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.