Rethinking Interpretability in the Era of Large Language Models
- URL: http://arxiv.org/abs/2402.01761v1
- Date: Tue, 30 Jan 2024 17:38:54 GMT
- Title: Rethinking Interpretability in the Era of Large Language Models
- Authors: Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana,
Jianfeng Gao
- Abstract summary: Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
- Score: 76.1947554386879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable machine learning has exploded as an area of interest over the
last decade, sparked by the rise of increasingly large datasets and deep neural
networks. Simultaneously, large language models (LLMs) have demonstrated
remarkable capabilities across a wide array of tasks, offering a chance to
rethink opportunities in interpretable machine learning. Notably, the
capability to explain in natural language allows LLMs to expand the scale and
complexity of patterns that can be given to a human. However, these new
capabilities raise new challenges, such as hallucinated explanations and
immense computational costs.
In this position paper, we start by reviewing existing methods to evaluate
the emerging field of LLM interpretation (both interpreting LLMs and using LLMs
for explanation). We contend that, despite their limitations, LLMs hold the
opportunity to redefine interpretability with a more ambitious scope across
many applications, including in auditing LLMs themselves. We highlight two
emerging research priorities for LLM interpretation: using LLMs to directly
analyze new datasets and to generate interactive explanations.
Related papers
- Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Can LLMs Compute with Reasons? [4.995189458714599]
Large language models (LLMs) often struggle with complex mathematical tasks, prone to "hallucinating" incorrect answers.
We propose an "Inductive Learning" approach utilizing a distributed network of Small LangSLMs.
arXiv Detail & Related papers (2024-02-19T12:04:25Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - In-Context Explainers: Harnessing LLMs for Explaining Black Box Models [28.396104334980492]
Large Language Models (LLMs) have demonstrated exceptional capabilities in complex tasks like machine translation, commonsense reasoning, and language understanding.
One of the primary reasons for the adaptability of LLMs in such diverse tasks is their in-context learning (ICL) capability, which allows them to perform well on new tasks by simply using a few task samples in the prompt.
We propose a novel framework, In-Context Explainers, comprising of three novel approaches that exploit the ICL capabilities of LLMs to explain the predictions made by other predictive models.
arXiv Detail & Related papers (2023-10-09T15:31:03Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.