論文の概要: Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of
Large Language Models for Code Generation
- arxiv url: http://arxiv.org/abs/2305.01210v1
- Date: Tue, 2 May 2023 05:46:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 15:13:16.355641
- Title: Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of
Large Language Models for Code Generation
- Title(参考訳): ChatGPTで生成されたコードは本当に正しいか?
コード生成のための大規模言語モデルの厳密な評価
- Authors: Jiawei Liu and Chunqiu Steven Xia and Yuyao Wang and Lingming Zhang
- Abstract要約: 我々は,LLM合成符号の機能的正しさを厳格に評価するEvalPlusを提案する。
EvalPlusはベース評価データセットを取り込み、自動入力生成ステップを使用して、大量の新しいテスト入力を生成し、多様化する。
人気のあるHUMANEVALベンチマークを拡張し、81倍の追加でHUMANEVAL+を構築します。
- 参考スコア(独自算出の注目度): 19.54295263365522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Program synthesis has been long studied with recent approaches focused on
directly using the power of Large Language Models (LLMs) to generate code
according to user intent written in natural language. Code evaluation datasets,
containing curated synthesis problems with input/output test-cases, are used to
measure the performance of various LLMs on code synthesis. However, test-cases
in these datasets can be limited in both quantity and quality for fully
assessing the functional correctness of the generated code. Such limitation in
the existing benchmarks begs the following question: In the era of LLMs, is the
code generated really correct? To answer this, we propose EvalPlus -- a code
synthesis benchmarking framework to rigorously evaluate the functional
correctness of LLM-synthesized code. In short, EvalPlus takes in the base
evaluation dataset and uses an automatic input generation step to produce and
diversify large amounts of new test inputs using both LLM-based and
mutation-based input generators to further validate the synthesized code. We
extend the popular HUMANEVAL benchmark and build HUMANEVAL+ with 81x
additionally generated tests. Our extensive evaluation across 14 popular LLMs
demonstrates that HUMANEVAL+ is able to catch significant amounts of previously
undetected wrong code synthesized by LLMs, reducing the pass@k by 15.1% on
average! Moreover, we even found several incorrect ground-truth implementations
in HUMANEVAL. Our work not only indicates that prior popular code synthesis
evaluation results do not accurately reflect the true performance of LLMs for
code synthesis but also opens up a new direction to improve programming
benchmarks through automated test input generation.
- Abstract(参考訳): プログラム合成は、自然言語で書かれたユーザ意図に従ってコードを生成するために、LLM(Large Language Models)の力を直接利用することに焦点を当てた最近のアプローチで長い間研究されてきた。
コード合成における各種LLMの性能測定には,入力/出力テストケースによるキュレートされた合成問題を含むコード評価データセットを用いる。
しかし、これらのデータセットのテストケースは、生成されたコードの機能的正確性を完全に評価するために、量と品質の両方で制限することができる。
LLMの時代、生成されたコードは本当に正しいのでしょうか?
そこで我々は,LLM合成コードの機能的正しさを厳格に評価するコード合成ベンチマークフレームワークであるEvalPlusを提案する。
簡単に言うと、EvalPlusはベース評価データセットを取り込み、自動入力生成ステップを使用して、LLMベースおよび突然変異ベースの入力ジェネレータを使用して大量の新しいテスト入力を生成し、多様化し、さらに合成コードを検証する。
人気のあるHUMANEVALベンチマークを拡張し、81倍の追加でHUMANEVAL+を構築します。
14のLLMで広く評価した結果、HUMANEVAL+は、LLMsによって合成された未検出の間違ったコードを大量に取得でき、平均でpass@kを15.1%削減できることがわかった!
さらに,HUMANEVALでは不正確な接地真実の実装もいくつか見いだした。
我々の研究は、従来のコード合成評価結果が、コード合成のためのLLMの真の性能を正確に反映しているだけでなく、自動テストインプット生成によるプログラミングベンチマークを改善するための新たな方向性を開くことを示唆している。
関連論文リスト
- AIME: AI System Optimization via Multiple LLM Evaluators [79.03422337674664]
AIME は複数の LLM を利用した評価プロトコルであり、それぞれが独立した基準で評価を生成し、結合を通してそれらを結合する。
コード生成タスクにおける AIME のベースラインメソッドのパフォーマンスは,LeetCodeHard と HumanEval データセットの単一 LLM 評価プロトコルよりも最大 62% 高いエラー検出率,最大 16% 高い成功率で向上している。
論文 参考訳(メタデータ) (2024-10-04T04:03:24Z) - How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
大規模言語モデル(LLM)の開発は、プログラム合成のフロンティアを著しく押し上げている。
ほとんどの評価フレームワークは生成したコードの(機能的な)正しさに重点を置いています。
我々は,LLMの効率的なコード生成能力を評価するための厳格で高水準なベンチマークENAMELを開発した。
論文 参考訳(メタデータ) (2024-06-10T04:19:20Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
そこで本研究では,コードと書き直された変種との類似性に基づいて,ゼロショット合成符号検出器を提案する。
以上の結果から,既存のテキスト用合成コンテンツ検出装置よりも顕著な向上が見られた。
論文 参考訳(メタデータ) (2024-05-25T08:57:28Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
コードのための大規模な言語モデル(LLM)は、強力なコード理解と生成能力を示している。
コード推論は、コードLLMの最も重要な能力の1つである。
本稿では,プログラム実行によるLLMのコード推論能力と一貫性を評価するためのフレームワークであるRevalを提案する。
論文 参考訳(メタデータ) (2024-03-25T05:37:16Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - Mercury: A Code Efficiency Benchmark for Code Large Language Models [41.51235610016959]
我々は、Large Language Models for Code (Code LLMs)の最初のコード効率ベンチマークであるMercuryを提示する。
1,889のPythonタスクで構成され、それぞれに現実の効率のベースラインとして機能する適切なソリューションが伴っている。
そこで我々は,機能的正当性とコード効率を同時に反映する,実行時毎のパススコアを計算する新たな指標Beyondを導入する。
論文 参考訳(メタデータ) (2024-02-12T17:53:22Z) - Assured LLM-Based Software Engineering [51.003878077888686]
この記事では,2024年4月15日にポルトガルのリスボンで開催された International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering で,Mark Harman 氏による基調講演の内容の概要を紹介する。
論文 参考訳(メタデータ) (2024-02-06T20:38:46Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Coarse-Tuning Models of Code with Reinforcement Learning Feedback [0.0]
コード上で事前訓練されたLarge Language Models (LLM) が、プログラム合成の主流のアプローチとして登場した。
コードの品質を評価する接地関数からのフィードバックを用いて、強化学習により事前学習したLLMをさらに訓練するRCCFを提案する。
論文 参考訳(メタデータ) (2023-05-25T22:09:08Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
大きな言語モデル(LLM)は、機能記述からコードを実装するのに優れているが、アルゴリズムの問題に悩まされている。
我々は,アルゴリズムプログラムを LLM 生成 Oracle で合成するフレームワーク ALGO を提案し,その生成をガイドし,その正確性を検証する。
実験の結果,ALGOを装着すると,Codexモデルよりも8倍,CodeTよりも2.6倍の1サブミッションパス率が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-24T00:10:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。