論文の概要: Exploring vision transformer layer choosing for semantic segmentation
- arxiv url: http://arxiv.org/abs/2305.01279v1
- Date: Tue, 2 May 2023 09:29:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 14:44:31.675534
- Title: Exploring vision transformer layer choosing for semantic segmentation
- Title(参考訳): 意味セグメンテーション選択のための視覚トランスフォーマー層の検討
- Authors: Fangjian Lin, Yizhe Ma, Shengwei Tian
- Abstract要約: 適応融合と特徴選択のためのネックネットワークであるViTControllerを提案する。
提案手法の有効性を,異なるデータセットとモデルを用いて検証する。
我々の方法はプラグインモジュールとしても使え、異なるネットワークに挿入できる。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive work has demonstrated the effectiveness of Vision Transformers. The
plain Vision Transformer tends to obtain multi-scale features by selecting
fixed layers, or the last layer of features aiming to achieve higher
performance in dense prediction tasks. However, this selection is often based
on manual operation. And different samples often exhibit different features at
different layers (e.g., edge, structure, texture, detail, etc.). This requires
us to seek a dynamic adaptive fusion method to filter different layer features.
In this paper, unlike previous encoder and decoder work, we design a neck
network for adaptive fusion and feature selection, called ViTController. We
validate the effectiveness of our method on different datasets and models and
surpass previous state-of-the-art methods. Finally, our method can also be used
as a plug-in module and inserted into different networks.
- Abstract(参考訳): 広範囲にわたる研究はビジョントランスフォーマーの有効性を示した。
プレーンビジョントランスフォーマは固定層を選択するか、密集した予測タスクで高い性能を達成するための最後の層を選択することで、マルチスケールな特徴を得る傾向がある。
しかし、この選択はしばしば手動操作に基づいている。
そして、異なるサンプルは、しばしば異なる層(例えば、エッジ、構造、テクスチャ、詳細など)で異なる特徴を示す。
これにより、異なる層の特徴をフィルタリングする動的適応融合法を求める必要がある。
本稿では,従来のエンコーダやデコーダとは違って,適応型融合と特徴選択のためのネックネットワークViTControllerを設計する。
本手法の有効性を異なるデータセットとモデルで検証し,従来の最先端手法を上回った。
最後に,本手法をプラグインモジュールとして使用し,異なるネットワークに挿入する。
関連論文リスト
- DAMSDet: Dynamic Adaptive Multispectral Detection Transformer with
Competitive Query Selection and Adaptive Feature Fusion [82.2425759608975]
赤外可視物体検出は、赤外画像と可視画像の相補的情報を融合することにより、フルデイ物体検出の堅牢化を目指している。
本稿では,この2つの課題に対処する動的適応型マルチスペクトル検出変換器(DAMSDet)を提案する。
4つの公開データセットの実験は、他の最先端の手法と比較して大幅に改善されている。
論文 参考訳(メタデータ) (2024-03-01T07:03:27Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
畳み込みニューラルネットワークとディープトランスを組み合わせた新しいセグメンテーションモデルを提案する。
提案手法は,最先端技術と比較してセグメント化精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-20T12:03:54Z) - Multimodal Token Fusion for Vision Transformers [54.81107795090239]
変換器を用いた視覚タスクのためのマルチモーダルトークン融合法(TokenFusion)を提案する。
複数のモダリティを効果的に融合させるために、TokenFusionは動的に非形式的トークンを検出し、これらのトークンを投影および集約されたモジュール間特徴に置き換える。
TokenFusionの設計により、トランスフォーマーはマルチモーダル特徴間の相関を学習できるが、シングルモーダルトランスアーキテクチャはほとんど無傷である。
論文 参考訳(メタデータ) (2022-04-19T07:47:50Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
セグメンテーションネットワークによって抽出されたマルチスケール特徴の識別能力を高めるために,コントラスト学習を適用した。
まず、エンコーダのマルチスケール表現を共通の特徴空間にマッピングすることにより、教師付き局所言語制約の新しい形式をインスタンス化する。
論文 参考訳(メタデータ) (2022-03-25T01:24:24Z) - MPViT: Multi-Path Vision Transformer for Dense Prediction [43.89623453679854]
Vision Transformers (ViTs) は、単一スケールパッチによるマルチスケール表現のためのシンプルなマルチステージ構造を構築する。
OuriTsのスケールは5Mから73Mまでで、最先端のVision Transformerよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-12-21T06:34:50Z) - Analogous to Evolutionary Algorithm: Designing a Unified Sequence Model [58.17021225930069]
実演的進化アルゴリズム(EA)と類似した視覚変換器の合理性について説明する。
我々は、より効率的なEATモデルを提案し、様々なタスクに柔軟に対処するタスク関連ヘッドを設計する。
近年のビジョントランスに比べて,イメージネット分類作業における最先端の成果が得られている。
論文 参考訳(メタデータ) (2021-05-31T16:20:03Z) - Point Cloud Learning with Transformer [2.3204178451683264]
我々は,マルチレベルマルチスケールポイントトランスフォーマ(mlmspt)と呼ばれる新しいフレームワークを提案する。
具体的には、点ピラミッド変換器を用いて、多様な分解能やスケールを持つ特徴をモデル化する。
マルチレベルトランスモジュールは、各スケールの異なるレベルからコンテキスト情報を集約し、それらの相互作用を強化するように設計されている。
論文 参考訳(メタデータ) (2021-04-28T08:39:21Z) - Visual Saliency Transformer [127.33678448761599]
RGBとRGB-Dの液状物体検出(SOD)のための、純粋な変圧器であるVST(Visual Saliency Transformer)に基づく新しい統一モデルを開発しました。
イメージパッチを入力として取り、トランスフォーマーを利用してイメージパッチ間のグローバルコンテキストを伝搬する。
実験結果から,RGBとRGB-D SODのベンチマークデータセットにおいて,本モデルが既存の最新結果を上回っていることが示された。
論文 参考訳(メタデータ) (2021-04-25T08:24:06Z) - IOT: Instance-wise Layer Reordering for Transformer Structures [173.39918590438245]
トランスフォーマの固定層順序の仮定を分解し,モデル構造にインスタンス単位の層順序変更を導入する。
当社の手法はTransformer以外のアーキテクチャにも適用可能です。
論文 参考訳(メタデータ) (2021-03-05T03:44:42Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。