論文の概要: Projection-Free Online Convex Optimization with Stochastic Constraints
- arxiv url: http://arxiv.org/abs/2305.01333v2
- Date: Tue, 16 May 2023 12:37:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 18:20:24.778069
- Title: Projection-Free Online Convex Optimization with Stochastic Constraints
- Title(参考訳): 確率制約付き投影不要オンライン凸最適化
- Authors: Duksang Lee, Nam Ho-Nguyen, Dabeen Lee
- Abstract要約: 我々は制約付きオンライン凸最適化のためのプロジェクションフリーアルゴリズムを開発した。
各種設定に対してサブ線形後悔と制約違反境界を推定する。
我々は、制約違反を減らして、後悔と同じ成長をすることができることを証明している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper develops projection-free algorithms for online convex optimization
with stochastic constraints. We design an online primal-dual projection-free
framework that can take any projection-free algorithms developed for online
convex optimization with no long-term constraint. With this general template,
we deduce sublinear regret and constraint violation bounds for various
settings. Moreover, for the case where the loss and constraint functions are
smooth, we develop a primal-dual conditional gradient method that achieves
$O(\sqrt{T})$ regret and $O(T^{3/4})$ constraint violations. Furthermore, for
the setting where the loss and constraint functions are stochastic and strong
duality holds for the associated offline stochastic optimization problem, we
prove that the constraint violation can be reduced to have the same asymptotic
growth as the regret.
- Abstract(参考訳): 本稿では,確率制約付きオンライン凸最適化のためのプロジェクションフリーアルゴリズムを提案する。
オンライン凸最適化のために開発されたプロジェクションフリーのアルゴリズムを,長期的制約なく利用することができる。
この一般的なテンプレートを用いて、様々な設定に対するサブ線形後悔と制約違反境界を推定する。
さらに、損失関数と制約関数が滑らかな場合には、$O(\sqrt{T})$ regret および $O(T^{3/4})$ constraint violations を達成する原始双対条件勾配法を開発する。
さらに、損失関数と制約関数が確率的であり、関連するオフライン確率最適化問題に強い双対性があるような場合、この制約違反は、後悔と同じ漸近的成長を持つことができることを示す。
関連論文リスト
- Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Multi-point Feedback of Bandit Convex Optimization with Hard Constraints [1.8130068086063336]
本研究では,学習者が損失関数の部分的情報に基づいて決定列を生成することを目的とした制約付き帯域凸最適化について検討する。
我々は、累積的テクスト制約違反を制約違反の指標として採用する。
我々のアルゴリズムは、凸損失関数と時間変化制約に対して、$O(d2Tmaxc,1-c)$ regret bounds と $O(d2T1-fracc2)$ cumulative hard constraint violation bounds を得る。
論文 参考訳(メタデータ) (2023-10-17T02:43:22Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Online Convex Optimization with Stochastic Constraints: Zero Constraint
Violation and Bandit Feedback [0.0]
本稿では,O(sqrtT)$期待後悔とゼロ制約違反を保証できるドリフト・プラス・ペナルティアルゴリズムの変種を提案する。
我々のアルゴリズムは、バニラドリフト・プラス・ペナルティ法とは対照的に、時間地平線の長さが$T$である。
論文 参考訳(メタデータ) (2023-01-26T18:04:26Z) - Lazy Lagrangians with Predictions for Online Learning [24.18464455081512]
オンライン凸最適化における時間的差分制約による一般的な問題について考察する。
Follow-The-Regularized-Leaderイテレーションと予測適応動的ステップを組み合わせることで、新しい原始双対アルゴリズムを設計する。
我々の研究は、この制約されたOCO設定のためのFTRLフレームワークを拡張し、各最先端のグレディベースのソリューションより優れています。
論文 参考訳(メタデータ) (2022-01-08T21:49:10Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
本稿では,スムーズさを生かし,問題依存量による動的後悔のT$への依存を補う新しいオンラインアルゴリズムを提案する。
この結果が本質的な難易度に適応しているのは, 既往の結果よりも厳密であり, 最悪の場合, 同一レートの保護が可能であるからである。
論文 参考訳(メタデータ) (2021-12-29T02:42:59Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Concave Utility Reinforcement Learning with Zero-Constraint Violations [43.29210413964558]
本稿では,凸制約を伴うCURL(Concave utility reinforcement Learning)の問題点について考察する。
制約違反をゼロにするモデルベース学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:13:33Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
非定常環境におけるオンライン凸最適化について検討する。
パフォーマンス指標として動的後悔を選択します。
本研究では, 滑らかさを活かして, 動的後悔をさらに高めることが可能であることを示す。
論文 参考訳(メタデータ) (2020-07-07T14:10:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。