Aharonov-Bohm effect in Presence of Superconductors
- URL: http://arxiv.org/abs/2305.01408v1
- Date: Tue, 2 May 2023 13:30:02 GMT
- Title: Aharonov-Bohm effect in Presence of Superconductors
- Authors: L. O'Raifeartaigh, N. Straumann, A. Wipf
- Abstract summary: The energy for the Aharonov-Bohm effect could be traced to the interaction energy between the magnetic field of the electron and the background magnetic field.
The paradox that arises from the fact that such a shielding would apparently preclude the possibility of an interaction energy is resolved.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The analysis of a previous paper, in which it was shown that the energy for
the Aharonov-Bohm effect could be traced to the interaction energy between the
magnetic field of the electron and the background magnetic field, is extended
to cover the case in which the magnetic field of the electron is shielded from
the background magnetic field by superconducting material. The paradox that
arises from the fact that such a shielding would apparently preclude the
possibility of an interaction energy is resolved and, within the limits of the
ideal situation considered, the observed experimental result is derived.
Related papers
- Electrodynamic Aharonov-Bohm effect [0.0]
We propose an electrodynamic Aharonov-Bohm scheme where a nonzero AB phase difference appears even if the interferometer paths do not enclose a magnetic flux.
In the proposal, the current in a solenoid outside the interferometer varies in time while the quantum particle is in a superposition state inside two Faraday cages.
arXiv Detail & Related papers (2023-02-28T13:07:24Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Gauge invariance of the local phase in the Aharonov-Bohm interference:
quantum electrodynamic approach [0.0]
In the Aharonov-Bohm (AB) effect, interference fringes are observed for a charged particle in the absence of the local overlap with the external electromagnetic field.
This notion of the apparent nonlocality of the interaction or the significant role of the potential has recently been challenged and are under debate.
The quantum electrodynamic approach provides a microscopic picture of the characteristics of the interaction between a charge and an external field.
arXiv Detail & Related papers (2022-06-17T08:31:51Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - The Aharonov Bohm effect as a material phenomenon [0.0]
An experiment to observe the Aharonov-Bohm effect is discussed.
An analysis of an experiment with a solenoid shielded by a superconducting shell is given.
arXiv Detail & Related papers (2021-09-25T21:25:40Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Aharonov-Casher and shielded Aharonov-Bohm effects with a quantum
electromagnetic field [0.0]
We use a covariant formalism capable of describing the electric and magnetic versions of the Aharonov-Bohm effect.
We show that the magnetic Aharonov-Bohm effect must be present even if the solenoid generating the magnetic field is shielded by a perfect conductor.
arXiv Detail & Related papers (2020-11-17T23:49:09Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Three Faces of the Aharonov-Bohm Phase [0.0]
The Aharonov-Bohm (AB) phase that makes its entry in the above bizarre effect is also deployed to derive the observed magnetic flux quantisation in superconductors.
The Dirac result implies that the existence of a single magnetic monopole anywhere in the universe would entail quantisation of the product of a particle's electric charge and the monopole's magnetic charge.
arXiv Detail & Related papers (2020-10-21T13:34:38Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.