FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured
Game State Information
- URL: http://arxiv.org/abs/2305.01528v3
- Date: Fri, 26 May 2023 01:12:15 GMT
- Title: FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured
Game State Information
- Authors: Andrew Zhu and Karmanya Aggarwal and Alexander Feng and Lara J. Martin
and Chris Callison-Burch
- Abstract summary: We present FIREBALL, a large dataset containing nearly 25,000 unique sessions from real D&D gameplay on Discord with true game state info.
We demonstrate that FIREBALL can improve natural language generation (NLG) by using Avrae state information.
- Score: 75.201485544517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dungeons & Dragons (D&D) is a tabletop roleplaying game with complex natural
language interactions between players and hidden state information. Recent work
has shown that large language models (LLMs) that have access to state
information can generate higher quality game turns than LLMs that use dialog
history alone. However, previous work used game state information that was
heuristically created and was not a true gold standard game state. We present
FIREBALL, a large dataset containing nearly 25,000 unique sessions from real
D&D gameplay on Discord with true game state info. We recorded game play
sessions of players who used the Avrae bot, which was developed to aid people
in playing D&D online, capturing language, game commands and underlying game
state information. We demonstrate that FIREBALL can improve natural language
generation (NLG) by using Avrae state information, improving both automated
metrics and human judgments of quality. Additionally, we show that LLMs can
generate executable Avrae commands, particularly after finetuning.
Related papers
- Understanding Players as if They Are Talking to the Game in a Customized Language: A Pilot Study [3.4333699338998693]
This pilot study explores the application of language models (LMs) to model game event sequences.
We transform raw event data into textual sequences and pretraining a Longformer model on this data.
The results demonstrate the potential of self-supervised LMs in enhancing game design and personalization without relying on ground-truth labels.
arXiv Detail & Related papers (2024-10-24T09:59:10Z) - Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game descriptions and generate game-play processes.
We train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs.
arXiv Detail & Related papers (2024-10-17T11:16:27Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game rules.
We train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, a universally cherished card game.
arXiv Detail & Related papers (2024-03-30T08:02:16Z) - CALYPSO: LLMs as Dungeon Masters' Assistants [46.61924662589895]
Large language models (LLMs) have shown remarkable abilities to generate coherent natural language text.
We introduce CALYPSO, a system of LLM-powered interfaces that support DMs with information and inspiration specific to their own scenario.
When given access to CALYPSO, DMs reported that it generated high-fidelity text suitable for direct presentation to players, and low-fidelity ideas that the DM could develop further while maintaining their creative agency.
arXiv Detail & Related papers (2023-08-15T02:57:00Z) - Can Large Language Models Play Text Games Well? Current State-of-the-Art
and Open Questions [22.669941641551823]
Large language models (LLMs) such as ChatGPT and GPT-4 have recently demonstrated their remarkable abilities of communicating with human users.
We take an initiative to investigate their capacities of playing text games, in which a player has to understand the environment and respond to situations by having dialogues with the game world.
Our experiments show that ChatGPT performs competitively compared to all the existing systems but still exhibits a low level of intelligence.
arXiv Detail & Related papers (2023-04-06T05:01:28Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Level Generation Through Large Language Models [3.620115940532283]
Large Language Models (LLMs) are powerful tools capable of leveraging their training on natural language to write stories, generate code, and answer questions.
But can they generate functional video game levels?
Game levels, with their complex functional constraints and spatial relationships in more than one dimension, are very different from the kinds of data an LLM typically sees during training.
We investigate the use of LLMs to generate levels for the game Sokoban, finding that LLMs are indeed capable of doing so, and that their performance scales dramatically with dataset size.
arXiv Detail & Related papers (2023-02-11T23:34:42Z) - Infusing Commonsense World Models with Graph Knowledge [89.27044249858332]
We study the setting of generating narratives in an open world text adventure game.
A graph representation of the underlying game state can be used to train models that consume and output both grounded graph representations and natural language descriptions and actions.
arXiv Detail & Related papers (2023-01-13T19:58:27Z) - Dungeons and Dragons as a Dialog Challenge for Artificial Intelligence [28.558934742150022]
We frame D&D as a dialogue system challenge, where the tasks are to both generate the next conversational turn in the game and predict the state of the game given the dialogue history.
We create a gameplay dataset consisting of nearly 900 games, with a total of 7,000 players, 800,000 dialogue turns, 500,000 dice rolls, and 58 million words.
We train a large language model (LM) to generate the next game turn, conditioning it on different information.
arXiv Detail & Related papers (2022-10-13T15:43:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.