論文の概要: Semi-Supervised Segmentation of Functional Tissue Units at the Cellular
Level
- arxiv url: http://arxiv.org/abs/2305.02148v2
- Date: Sun, 10 Dec 2023 13:57:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 20:49:12.209275
- Title: Semi-Supervised Segmentation of Functional Tissue Units at the Cellular
Level
- Title(参考訳): 細胞レベルでの機能組織単位の半監督的セグメンテーション
- Authors: Volodymyr Sydorskyi, Igor Krashenyi, Denis Sakva and Oleksandr
Zarichkovyi
- Abstract要約: 細胞レベルでの機能的組織単位セグメンテーション法を提案する。
提案手法は, 細胞レベルでの機能的組織単位のセグメンテーションにおける現状と同等である。
- 参考スコア(独自算出の注目度): 17.59642094240475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new method for functional tissue unit segmentation at the
cellular level, which utilizes the latest deep learning semantic segmentation
approaches together with domain adaptation and semi-supervised learning
techniques. This approach allows for minimizing the domain gap, class
imbalance, and captures settings influence between HPA and HubMAP datasets. The
presented approach achieves comparable with state-of-the-art-result in
functional tissue unit segmentation at the cellular level. The source code is
available at https://github.com/VSydorskyy/hubmap_2022_htt_solution
- Abstract(参考訳): 本稿では,最新の深層学習セマンティックセマンティックセマンティクスアプローチと,ドメイン適応と半教師付き学習技術を用いた,細胞レベルでの機能組織単位セマンティクスの新しい手法を提案する。
このアプローチにより、ドメインギャップの最小化、クラス不均衡、HPAとHubMAPデータセット間の設定の影響のキャプチャが可能になる。
提案手法は, 細胞レベルでの機能的組織単位のセグメンテーションにおける現状と同等である。
ソースコードはhttps://github.com/VSydorskyy/hubmap_2022_htt_solutionで入手できる。
関連論文リスト
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [40.3881565207086]
本研究では,ポリプセグメンテーションのためのエッジ対応特徴集約ネットワーク(EFA-Net)を提案する。
EFA-Netは、ポリプセグメンテーションの性能を高めるために、クロスレベルとマルチスケールの機能を完全に活用することができる。
広く採用されている5つの大腸内視鏡データセットの実験結果から,我々のEFA-Netは,一般化と有効性の観点から,最先端のポリプセグメンテーション法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-19T11:09:38Z) - Hierarchical Dense Correlation Distillation for Few-Shot
Segmentation-Extended Abstract [47.85056124410376]
Few-shot semantic segmentation (FSS) は、いくつかのアノテーションだけで見えないクラスをセグメンテーションするクラスに依存しないモデルを構築することを目的としている。
我々は、トランスアーキテクチャに基づく階層的分離マッチングネットワーク(HDMNet)マイニングピクセルレベルのサポート相関を設計する。
本稿では,列車セットの過度適合を低減し,粗い分解から意味対応を生かした相関蒸留を導入し,細粒度セグメンテーションを向上するマッチングモジュールを提案する。
論文 参考訳(メタデータ) (2023-06-27T08:10:20Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
ゼロショット設定に適用した場合、最先端の教師付き性能を実現するセマンティックセマンティックセマンティクスへのアプローチを提案する。
これは各クラスラベルを、クラスを記述する短い段落のベクトル値の埋め込みに置き換えることによって達成される。
結果として得られた200万以上の画像の統合セマンティックセグメンテーションデータセットは、7つのベンチマークデータセット上の最先端の教師付きメソッドと同等のパフォーマンスを達成するモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-04T07:19:09Z) - Self-semantic contour adaptation for cross modality brain tumor
segmentation [13.260109561599904]
本稿では,前駆的なタスクへの適応を容易にするために,低レベルエッジ情報を活用することを提案する。
正確な輪郭は、意味適応を導くために空間情報を提供する。
われわれはBraTS2018データベース上で脳腫瘍のクロスモーダルセグメンテーションの枠組みについて検討した。
論文 参考訳(メタデータ) (2022-01-13T15:16:55Z) - Reducing Information Bottleneck for Weakly Supervised Semantic
Segmentation [17.979336178991083]
弱教師付きセマンティックセグメンテーションは、クラスラベルからピクセルレベルのローカライゼーションを生成する。
このようなラベルで訓練された分類器は、ターゲットオブジェクトの小さな識別領域に焦点を当てる可能性が高い。
本稿では,最後のアクティベーション関数を除去することで,情報のボトルネックを低減する手法を提案する。
さらに,非識別領域から分類への情報伝達をさらに促進する新たなプーリング手法を提案する。
論文 参考訳(メタデータ) (2021-10-13T06:49:45Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
上記の問題を緩和するために,ドメイン仮定の近接性に基づく新しいUDAセマンティックセマンティックセマンティクス手法を提案する。
具体的には、同じ意味を持つクラスタピクセルにプロトタイプクラスタリング戦略を適用し、ターゲットドメインピクセル間の関連付けをより良く維持します。
GTA5とSynthiaで行った実験は,本法の有効性を実証した。
論文 参考訳(メタデータ) (2021-05-07T10:24:18Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
本研究では,分割マップのインスタンスへの変換を改善するために,2段階の後処理手順であるSplitとExpandを提案する。
Splitのステップでは,セルの集合をセグメント化マップから個々のセルインスタンスに分割し,セル中心の予測を導出する。
拡張ステップでは、細胞中心予測を用いて、小さな細胞が欠落していることが分かる。
論文 参考訳(メタデータ) (2020-07-21T14:05:09Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
畳み込みニューラルネットワークに基づくアプローチは、セマンティックセグメンテーションにおいて顕著な進歩を遂げた。
この制限に対処するために、グラフィックエンジンから生成された注釈付きデータを使用してセグメンテーションモデルをトレーニングする。
ドメイン間およびドメイン間ギャップを最小化する2段階の自己教師付きドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2020-04-16T15:24:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。