Real-Time Radiance Fields for Single-Image Portrait View Synthesis
- URL: http://arxiv.org/abs/2305.02310v1
- Date: Wed, 3 May 2023 17:56:01 GMT
- Title: Real-Time Radiance Fields for Single-Image Portrait View Synthesis
- Authors: Alex Trevithick, Matthew Chan, Michael Stengel, Eric R. Chan, Chao
Liu, Zhiding Yu, Sameh Khamis, Manmohan Chandraker, Ravi Ramamoorthi, Koki
Nagano
- Abstract summary: We present a one-shot method to infer and render a 3D representation from a single unposed image in real-time.
Given a single RGB input, our image encoder directly predicts a canonical triplane representation of a neural radiance field for 3D-aware novel view synthesis via volume rendering.
Our method is fast (24 fps) on consumer hardware, and produces higher quality results than strong GAN-inversion baselines that require test-time optimization.
- Score: 85.32826349697972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a one-shot method to infer and render a photorealistic 3D
representation from a single unposed image (e.g., face portrait) in real-time.
Given a single RGB input, our image encoder directly predicts a canonical
triplane representation of a neural radiance field for 3D-aware novel view
synthesis via volume rendering. Our method is fast (24 fps) on consumer
hardware, and produces higher quality results than strong GAN-inversion
baselines that require test-time optimization. To train our triplane encoder
pipeline, we use only synthetic data, showing how to distill the knowledge from
a pretrained 3D GAN into a feedforward encoder. Technical contributions include
a Vision Transformer-based triplane encoder, a camera data augmentation
strategy, and a well-designed loss function for synthetic data training. We
benchmark against the state-of-the-art methods, demonstrating significant
improvements in robustness and image quality in challenging real-world
settings. We showcase our results on portraits of faces (FFHQ) and cats (AFHQ),
but our algorithm can also be applied in the future to other categories with a
3D-aware image generator.
Related papers
- Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D
Reconstruction with Transformers [37.14235383028582]
We introduce a novel approach for single-view reconstruction that efficiently generates a 3D model from a single image via feed-forward inference.
Our method utilizes two transformer-based networks, namely a point decoder and a triplane decoder, to reconstruct 3D objects using a hybrid Triplane-Gaussian intermediate representation.
arXiv Detail & Related papers (2023-12-14T17:18:34Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - 3D Gaussian Splatting for Real-Time Radiance Field Rendering [4.320393382724066]
We introduce three key elements that allow us to achieve state-of-the-art visual quality while maintaining competitive training times.
We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets.
arXiv Detail & Related papers (2023-08-08T06:37:06Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
This paper presents a novel approach to building highly photorealistic digital head avatars.
Our method learns a canonical space via an implicit function parameterized by a neural network.
At test time, our method is driven by a monocular RGB video.
arXiv Detail & Related papers (2023-03-25T13:56:33Z) - TriPlaneNet: An Encoder for EG3D Inversion [1.9567015559455132]
NeRF-based GANs have introduced a number of approaches for high-resolution and high-fidelity generative modeling of human heads.
Despite the success of universal optimization-based methods for 2D GAN inversion, those applied to 3D GANs may fail to extrapolate the result onto the novel view.
We introduce a fast technique that bridges the gap between the two approaches by directly utilizing the tri-plane representation presented for the EG3D generative model.
arXiv Detail & Related papers (2023-03-23T17:56:20Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.